blob: fc94d19e9ec1ee68113dfea7a153585a6ff94604 [file] [log] [blame]
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
use core::{
fmt::{Debug, Formatter},
marker::PhantomData,
ptr::NonNull,
};
use crate::{
pointer::{
inner::PtrInner,
invariant::*,
transmute::{MutationCompatible, SizeEq, TransmuteFromPtr},
},
AlignmentError, CastError, CastType, KnownLayout, SizeError, TryFromBytes, ValidityError,
};
/// Module used to gate access to [`Ptr`]'s fields.
mod def {
use super::*;
#[cfg(doc)]
use super::super::invariant;
/// A raw pointer with more restrictions.
///
/// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
/// following ways (note that these requirements only hold of non-zero-sized
/// referents):
/// - It must derive from a valid allocation.
/// - It must reference a byte range which is contained inside the
/// allocation from which it derives.
/// - As a consequence, the byte range it references must have a size
/// which does not overflow `isize`.
///
/// Depending on how `Ptr` is parameterized, it may have additional
/// invariants:
/// - `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// - `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// - `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
///
/// `Ptr<'a, T>` is [covariant] in `'a` and invariant in `T`.
///
/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
pub struct Ptr<'a, T, I>
where
T: ?Sized,
I: Invariants,
{
/// # Invariants
///
/// 0. `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// 1. `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// 2. `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
// SAFETY: `PtrInner<'a, T>` is covariant in `'a` and invariant in `T`.
ptr: PtrInner<'a, T>,
_invariants: PhantomData<I>,
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// Constructs a `Ptr` from a [`NonNull`].
///
/// # Safety
///
/// The caller promises that:
///
/// 0. If `ptr`'s referent is not zero sized, then `ptr` has valid
/// provenance for its referent, which is entirely contained in some
/// Rust allocation, `A`.
/// 1. If `ptr`'s referent is not zero sized, `A` is guaranteed to live
/// for at least `'a`.
/// 2. `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// 3. `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// 4. `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
pub(super) unsafe fn new(ptr: NonNull<T>) -> Ptr<'a, T, I> {
// SAFETY: The caller has promised (in 0 - 1) to satisfy all safety
// invariants of `PtrInner::new`.
let ptr = unsafe { PtrInner::new(ptr) };
// SAFETY: The caller has promised (in 2 - 4) to satisfy all safety
// invariants of `Ptr`.
Self { ptr, _invariants: PhantomData }
}
/// Constructs a new `Ptr` from a [`PtrInner`].
///
/// # Safety
///
/// The caller promises that:
///
/// 0. `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// 1. `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// 2. `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
pub(crate) unsafe fn from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I> {
// SAFETY: The caller has promised to satisfy all safety invariants
// of `Ptr`.
Self { ptr, _invariants: PhantomData }
}
/// Converts this `Ptr<T>` to a [`PtrInner<T>`].
///
/// Note that this method does not consume `self`. The caller should
/// watch out for `unsafe` code which uses the returned value in a way
/// that violates the safety invariants of `self`.
pub(crate) fn as_inner(&self) -> PtrInner<'a, T> {
self.ptr
}
}
}
#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
pub use def::Ptr;
/// External trait implementations on [`Ptr`].
mod _external {
use super::*;
/// SAFETY: Shared pointers are safely `Copy`. `Ptr`'s other invariants
/// (besides aliasing) are unaffected by the number of references that exist
/// to `Ptr`'s referent. The notable cases are:
/// - Alignment is a property of the referent type (`T`) and the address,
/// both of which are unchanged
/// - Let `S(T, V)` be the set of bit values permitted to appear in the
/// referent of a `Ptr<T, I: Invariants<Validity = V>>`. Since this copy
/// does not change `I::Validity` or `T`, `S(T, I::Validity)` is also
/// unchanged.
///
/// We are required to guarantee that the referents of the original `Ptr`
/// and of the copy (which, of course, are actually the same since they
/// live in the same byte address range) both remain in the set `S(T,
/// I::Validity)`. Since this invariant holds on the original `Ptr`, it
/// cannot be violated by the original `Ptr`, and thus the original `Ptr`
/// cannot be used to violate this invariant on the copy. The inverse
/// holds as well.
impl<'a, T, I> Copy for Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants<Aliasing = Shared>,
{
}
/// SAFETY: See the safety comment on `Copy`.
impl<'a, T, I> Clone for Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants<Aliasing = Shared>,
{
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<'a, T, I> Debug for Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
self.as_inner().as_non_null().fmt(f)
}
}
}
/// Methods for converting to and from `Ptr` and Rust's safe reference types.
mod _conversions {
use super::*;
/// `&'a T` → `Ptr<'a, T>`
impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
where
T: 'a + ?Sized,
{
/// Constructs a `Ptr` from a shared reference.
#[doc(hidden)]
#[inline]
pub fn from_ref(ptr: &'a T) -> Self {
let inner = PtrInner::from_ref(ptr);
// SAFETY:
// 0. `ptr`, by invariant on `&'a T`, conforms to the aliasing
// invariant of `Shared`.
// 1. `ptr`, by invariant on `&'a T`, conforms to the alignment
// invariant of `Aligned`.
// 2. `ptr`'s referent, by invariant on `&'a T`, is a bit-valid `T`.
// This satisfies the requirement that a `Ptr<T, (_, _, Valid)>`
// point to a bit-valid `T`. Even if `T` permits interior
// mutation, this invariant guarantees that the returned `Ptr`
// can only ever be used to modify the referent to store
// bit-valid `T`s, which ensures that the returned `Ptr` cannot
// be used to violate the soundness of the original `ptr: &'a T`
// or of any other references that may exist to the same
// referent.
unsafe { Self::from_inner(inner) }
}
}
/// `&'a mut T` → `Ptr<'a, T>`
impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
where
T: 'a + ?Sized,
{
/// Constructs a `Ptr` from an exclusive reference.
#[inline]
pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
let inner = PtrInner::from_mut(ptr);
// SAFETY:
// 0. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
// invariant of `Exclusive`.
// 1. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
// invariant of `Aligned`.
// 2. `ptr`'s referent, by invariant on `&'a mut T`, is a bit-valid
// `T`. This satisfies the requirement that a `Ptr<T, (_, _,
// Valid)>` point to a bit-valid `T`. This invariant guarantees
// that the returned `Ptr` can only ever be used to modify the
// referent to store bit-valid `T`s, which ensures that the
// returned `Ptr` cannot be used to violate the soundness of the
// original `ptr: &'a mut T`.
unsafe { Self::from_inner(inner) }
}
}
/// `Ptr<'a, T>` → `&'a T`
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants<Alignment = Aligned, Validity = Valid>,
I::Aliasing: Reference,
{
/// Converts `self` to a shared reference.
// This consumes `self`, not `&self`, because `self` is, logically, a
// pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
// this doesn't prevent the caller from still using the pointer after
// calling `as_ref`.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_ref(self) -> &'a T {
let raw = self.as_inner().as_non_null();
// SAFETY: This invocation of `NonNull::as_ref` satisfies its
// documented safety preconditions:
//
// 1. The pointer is properly aligned. This is ensured by-contract
// on `Ptr`, because the `I::Alignment` is `Aligned`.
//
// 2. If the pointer's referent is not zero-sized, then the pointer
// must be “dereferenceable” in the sense defined in the module
// documentation; i.e.:
//
// > The memory range of the given size starting at the pointer
// > must all be within the bounds of a single allocated object.
// > [2]
//
// This is ensured by contract on all `PtrInner`s.
//
// 3. The pointer must point to a validly-initialized instance of
// `T`. This is ensured by-contract on `Ptr`, because the
// `I::Validity` is `Valid`.
//
// 4. You must enforce Rust’s aliasing rules. This is ensured by
// contract on `Ptr`, because `I::Aliasing: Reference`. Either it
// is `Shared` or `Exclusive`. If it is `Shared`, other
// references may not mutate the referent outside of
// `UnsafeCell`s.
//
// [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
// [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
unsafe { raw.as_ref() }
}
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
I::Aliasing: Reference,
{
/// Reborrows `self`, producing another `Ptr`.
///
/// Since `self` is borrowed immutably, this prevents any mutable
/// methods from being called on `self` as long as the returned `Ptr`
/// exists.
#[doc(hidden)]
#[inline]
#[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
where
'a: 'b,
{
// SAFETY: The following all hold by invariant on `self`, and thus
// hold of `ptr = self.as_inner()`:
// 0. SEE BELOW.
// 1. `ptr` conforms to the alignment invariant of
// [`I::Alignment`](invariant::Alignment).
// 2. `ptr` conforms to the validity invariant of
// [`I::Validity`](invariant::Validity). `self` and the returned
// `Ptr` permit the same bit values in their referents since they
// have the same referent type (`T`) and the same validity
// (`I::Validity`). Thus, regardless of what mutation is
// permitted (`Exclusive` aliasing or `Shared`-aliased interior
// mutation), neither can be used to write a value to the
// referent which violates the other's validity invariant.
//
// For aliasing (0 above), since `I::Aliasing: Reference`,
// there are two cases for `I::Aliasing`:
// - For `invariant::Shared`: `'a` outlives `'b`, and so the
// returned `Ptr` does not permit accessing the referent any
// longer than is possible via `self`. For shared aliasing, it is
// sound for multiple `Ptr`s to exist simultaneously which
// reference the same memory, so creating a new one is not
// problematic.
// - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
// return a `Ptr` with lifetime `'b`, `self` is inaccessible to
// the caller for the lifetime `'b` - in other words, `self` is
// inaccessible to the caller as long as the returned `Ptr`
// exists. Since `self` is an exclusive `Ptr`, no other live
// references or `Ptr`s may exist which refer to the same memory
// while `self` is live. Thus, as long as the returned `Ptr`
// exists, no other references or `Ptr`s which refer to the same
// memory may be live.
unsafe { Ptr::from_inner(self.as_inner()) }
}
}
/// `Ptr<'a, T>` → `&'a mut T`
impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
where
T: 'a + ?Sized,
{
/// Converts `self` to a mutable reference.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_mut(self) -> &'a mut T {
let mut raw = self.as_inner().as_non_null();
// SAFETY: This invocation of `NonNull::as_mut` satisfies its
// documented safety preconditions:
//
// 1. The pointer is properly aligned. This is ensured by-contract
// on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
//
// 2. If the pointer's referent is not zero-sized, then the pointer
// must be “dereferenceable” in the sense defined in the module
// documentation; i.e.:
//
// > The memory range of the given size starting at the pointer
// > must all be within the bounds of a single allocated object.
// > [2]
//
// This is ensured by contract on all `PtrInner`s.
//
// 3. The pointer must point to a validly-initialized instance of
// `T`. This is ensured by-contract on `Ptr`, because the
// validity invariant is `Valid`.
//
// 4. You must enforce Rust’s aliasing rules. This is ensured by
// contract on `Ptr`, because the `ALIASING_INVARIANT` is
// `Exclusive`.
//
// [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
// [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
unsafe { raw.as_mut() }
}
}
/// `Ptr<'a, T>` → `Ptr<'a, U>`
impl<'a, T: ?Sized, I> Ptr<'a, T, I>
where
I: Invariants,
{
pub(crate) fn transmute<U, V, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
where
V: Validity,
U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, R> + SizeEq<T> + ?Sized,
{
// SAFETY:
// - This cast preserves address and provenance
// - `U: SizeEq<T>` guarantees that this cast preserves the number
// of bytes in the referent
// - If aliasing is `Shared`, then by `U: TransmuteFromPtr<T>`, at
// least one of the following holds:
// - `T: Immutable` and `U: Immutable`, in which case it is
// trivially sound for shared code to operate on a `&T` and `&U`
// at the same time, as neither can perform interior mutation
// - It is directly guaranteed that it is sound for shared code to
// operate on these references simultaneously
// - By `U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V>`, it is
// sound to perform this transmute.
unsafe { self.transmute_unchecked(|t: NonNull<T>| U::cast_from_raw(t)) }
}
#[doc(hidden)]
#[inline(always)]
#[must_use]
pub fn recall_validity<V, R>(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)>
where
V: Validity,
T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, R>,
{
// SAFETY:
// - This cast is a no-op, and so trivially preserves address,
// referent size, and provenance
// - It is trivially sound to have multiple `&T` referencing the same
// referent simultaneously
// - By `T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V>`, it is
// sound to perform this transmute.
let ptr = unsafe { self.transmute_unchecked(|t| t) };
// SAFETY: `self` and `ptr` have the same address and referent type.
// Therefore, if `self` satisfies `I::Alignment`, then so does
// `ptr`.
unsafe { ptr.assume_alignment::<I::Alignment>() }
}
/// Casts to a different (unsized) target type without checking interior
/// mutability.
///
/// Callers should prefer [`cast_unsized`] where possible.
///
/// [`cast_unsized`]: Ptr::cast_unsized
///
/// # Safety
///
/// The caller promises that `u = cast(p)` is a pointer cast with the
/// following properties:
/// - `u` addresses a subset of the bytes addressed by `p`
/// - `u` has the same provenance as `p`
/// - If `I::Aliasing` is [`Shared`], it must not be possible for safe
/// code, operating on a `&T` and `&U` with the same referent
/// simultaneously, to cause undefined behavior
/// - It is sound to transmute a pointer of type `T` with aliasing
/// `I::Aliasing` and validity `I::Validity` to a pointer of type `U`
/// with aliasing `I::Aliasing` and validity `V`. This is a subtle
/// soundness requirement that is a function of `T`, `U`,
/// `I::Aliasing`, `I::Validity`, and `V`, and may depend upon the
/// presence, absence, or specific location of `UnsafeCell`s in `T`
/// and/or `U`. See [`Validity`] for more details.
///
/// `transmute_unchecked` guarantees that the pointer passed to `cast`
/// will reference a byte sequence which is either contained inside a
/// single allocated object or is zero sized. In either case, this means
/// that its size will fit in an `isize` and it will not wrap around the
/// address space.
#[doc(hidden)]
#[inline]
pub unsafe fn transmute_unchecked<U: ?Sized, V, F>(
self,
cast: F,
) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
where
V: Validity,
F: FnOnce(NonNull<T>) -> NonNull<U>,
{
// SAFETY: By invariant on `self`, `self.as_inner().as_non_null()`
// either references a zero-sized byte range, or else it references
// a byte range contained inside of a single allocated objection.
let ptr = cast(self.as_inner().as_non_null());
// SAFETY:
//
// Lemma 1: `ptr` has the same provenance as `self`. The caller
// promises that `cast` preserves provenance, and we call it with
// `self.as_inner().as_non_null()`.
//
// 0. By invariant, if `self`'s referent is not zero sized, then
// `self` has valid provenance for its entire referent, which is
// entirely contained in `A`. By Lemma 1, so does `ptr`.
// 1. By invariant on `self`, if `self`'s referent is not zero
// sized, then `A` is guaranteed to live for at least `'a`.
// 2. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
// - `Exclusive`: `self` is the only `Ptr` or reference which is
// permitted to read or modify the referent for the lifetime
// `'a`. Since we consume `self` by value, the returned pointer
// remains the only `Ptr` or reference which is permitted to
// read or modify the referent for the lifetime `'a`.
// - `Shared`: Since `self` has aliasing `Shared`, we know that
// no other code may mutate the referent during the lifetime
// `'a`, except via `UnsafeCell`s, and except as permitted by
// `T`'s library safety invariants. The caller promises that
// any safe operations which can be permitted on a `&T` and a
// `&U` simultaneously must be sound. Thus, no operations on a
// `&U` could violate `&T`'s library safety invariants, and
// vice-versa. Since any mutation via shared references outside
// of `UnsafeCell`s is unsound, this must be impossible using
// `&T` and `&U`.
// - `Inaccessible`: There are no restrictions we need to uphold.
// 3. `ptr` trivially satisfies the alignment invariant `Unaligned`.
// 4. The caller promises that `ptr` conforms to the validity
// invariant `V` with respect to its referent type, `U`.
unsafe { Ptr::new(ptr) }
}
}
/// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
impl<'a, T, I> Ptr<'a, T, I>
where
I: Invariants,
{
/// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
/// `Unalign<T>`.
pub(crate) fn into_unalign(
self,
) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
// SAFETY:
// - This cast preserves provenance.
// - This cast preserves address. `Unalign<T>` promises to have the
// same size as `T`, and so the cast returns a pointer addressing
// the same byte range as `p`.
// - By the same argument, the returned pointer refers to
// `UnsafeCell`s at the same locations as `p`.
// - `Unalign<T>` promises to have the same bit validity as `T`. By
// invariant on `Validity`, the set of bit patterns allowed in the
// referent of a `Ptr<X, (_, _, V)>` is only a function of the
// validity of `X` and of `V`. Thus, the set of bit patterns
// allowed in the referent of a `Ptr<T, (_, _, I::Validity)>` is
// the same as the set of bit patterns allowed in the referent of
// a `Ptr<Unalign<T>, (_, _, I::Validity)>`. As a result, `self`
// and the returned `Ptr` permit the same set of bit patterns in
// their referents, and so neither can be used to violate the
// validity of the other.
let ptr = unsafe {
#[allow(clippy::as_conversions)]
self.transmute_unchecked(NonNull::cast::<crate::Unalign<T>>)
};
ptr.bikeshed_recall_aligned()
}
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: ?Sized,
I: Invariants<Validity = Valid>,
I::Aliasing: Reference,
{
/// Reads the referent.
#[must_use]
#[inline]
pub fn read_unaligned<R>(self) -> T
where
T: Copy,
T: Read<I::Aliasing, R>,
{
(*self.into_unalign().as_ref()).into_inner()
}
/// Views the value as an aligned reference.
///
/// This is only available if `T` is [`Unaligned`].
#[must_use]
#[inline]
pub fn unaligned_as_ref(self) -> &'a T
where
T: crate::Unaligned,
{
self.bikeshed_recall_aligned().as_ref()
}
}
}
/// State transitions between invariants.
mod _transitions {
use crate::pointer::transmute::TryTransmuteFromPtr;
use super::*;
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has
/// `Exclusive` aliasing, or generates a compile-time assertion failure.
///
/// This allows code which is generic over aliasing to down-cast to a
/// concrete aliasing.
///
/// [`Exclusive`]: crate::pointer::invariant::Exclusive
#[inline]
pub(crate) fn into_exclusive_or_pme(
self,
) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
// NOTE(https://github.com/rust-lang/rust/issues/131625): We do this
// rather than just having `Aliasing::IS_EXCLUSIVE` have the panic
// behavior because doing it that way causes rustdoc to fail while
// attempting to document hidden items (since it evaluates the
// constant - and thus panics).
trait AliasingExt: Aliasing {
const IS_EXCL: bool;
}
impl<A: Aliasing> AliasingExt for A {
const IS_EXCL: bool = {
const_assert!(Self::IS_EXCLUSIVE);
true
};
}
assert!(I::Aliasing::IS_EXCL);
// SAFETY: We've confirmed that `self` already has the aliasing
// `Exclusive`. If it didn't, either the preceding assert would fail
// or evaluating `I::Aliasing::IS_EXCL` would fail. We're *pretty*
// sure that it's guaranteed to fail const eval, but the `assert!`
// provides a backstop in case that doesn't work.
unsafe { self.assume_exclusive() }
}
/// Assumes that `self` satisfies the invariants `H`.
///
/// # Safety
///
/// The caller promises that `self` satisfies the invariants `H`.
unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
// SAFETY: The caller has promised to satisfy all parameterized
// invariants of `Ptr`. `Ptr`'s other invariants are satisfied
// by-contract by the source `Ptr`.
unsafe { Ptr::from_inner(self.as_inner()) }
}
/// Helps the type system unify two distinct invariant types which are
/// actually the same.
pub(crate) fn unify_invariants<
H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
>(
self,
) -> Ptr<'a, T, H> {
// SAFETY: The associated type bounds on `H` ensure that the
// invariants are unchanged.
unsafe { self.assume_invariants::<H>() }
}
/// Assumes that `self` satisfies the aliasing requirement of `A`.
///
/// # Safety
///
/// The caller promises that `self` satisfies the aliasing requirement
/// of `A`.
#[inline]
pub(crate) unsafe fn assume_aliasing<A: Aliasing>(
self,
) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> {
// SAFETY: The caller promises that `self` satisfies the aliasing
// requirements of `A`.
unsafe { self.assume_invariants() }
}
/// Assumes `self` satisfies the aliasing requirement of [`Exclusive`].
///
/// # Safety
///
/// The caller promises that `self` satisfies the aliasing requirement
/// of `Exclusive`.
///
/// [`Exclusive`]: crate::pointer::invariant::Exclusive
#[inline]
pub(crate) unsafe fn assume_exclusive(
self,
) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
// SAFETY: The caller promises that `self` satisfies the aliasing
// requirements of `Exclusive`.
unsafe { self.assume_aliasing::<Exclusive>() }
}
/// Assumes that `self`'s referent is validly-aligned for `T` if
/// required by `A`.
///
/// # Safety
///
/// The caller promises that `self`'s referent conforms to the alignment
/// invariant of `T` if required by `A`.
#[inline]
pub(crate) unsafe fn assume_alignment<A: Alignment>(
self,
) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
// SAFETY: The caller promises that `self`'s referent is
// well-aligned for `T` if required by `A` .
unsafe { self.assume_invariants() }
}
/// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
/// on success.
pub(crate) fn try_into_aligned(
self,
) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
where
T: Sized,
{
if let Err(err) =
crate::util::validate_aligned_to::<_, T>(self.as_inner().as_non_null())
{
return Err(err.with_src(self));
}
// SAFETY: We just checked the alignment.
Ok(unsafe { self.assume_alignment::<Aligned>() })
}
/// Recalls that `self`'s referent is validly-aligned for `T`.
#[inline]
// FIXME(#859): Reconsider the name of this method before making it
// public.
pub(crate) fn bikeshed_recall_aligned(
self,
) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
where
T: crate::Unaligned,
{
// SAFETY: The bound `T: Unaligned` ensures that `T` has no
// non-trivial alignment requirement.
unsafe { self.assume_alignment::<Aligned>() }
}
/// Assumes that `self`'s referent conforms to the validity requirement
/// of `V`.
///
/// # Safety
///
/// The caller promises that `self`'s referent conforms to the validity
/// requirement of `V`.
#[doc(hidden)]
#[must_use]
#[inline]
pub unsafe fn assume_validity<V: Validity>(
self,
) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
// SAFETY: The caller promises that `self`'s referent conforms to
// the validity requirement of `V`.
unsafe { self.assume_invariants() }
}
/// A shorthand for `self.assume_validity<invariant::Initialized>()`.
///
/// # Safety
///
/// The caller promises to uphold the safety preconditions of
/// `self.assume_validity<invariant::Initialized>()`.
#[doc(hidden)]
#[must_use]
#[inline]
pub unsafe fn assume_initialized(
self,
) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
// SAFETY: The caller has promised to uphold the safety
// preconditions.
unsafe { self.assume_validity::<Initialized>() }
}
/// A shorthand for `self.assume_validity<Valid>()`.
///
/// # Safety
///
/// The caller promises to uphold the safety preconditions of
/// `self.assume_validity<Valid>()`.
#[doc(hidden)]
#[must_use]
#[inline]
pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
// SAFETY: The caller has promised to uphold the safety
// preconditions.
unsafe { self.assume_validity::<Valid>() }
}
/// Recalls that `self`'s referent is initialized.
#[doc(hidden)]
#[must_use]
#[inline]
// FIXME(#859): Reconsider the name of this method before making it
// public.
pub fn bikeshed_recall_initialized_from_bytes(
self,
) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)>
where
T: crate::IntoBytes + crate::FromBytes,
I: Invariants<Validity = Valid>,
{
// SAFETY: The `T: IntoBytes + FromBytes` bound ensures that `T`'s
// bit validity is equivalent to `[u8]`. In other words, the set of
// allowed referents for a `Ptr<T, (_, _, Valid)>` is the set of
// initialized bit patterns. The same is true of the set of allowed
// referents for any `Ptr<_, (_, _, Initialized)>`. Thus, this call
// does not change the set of allowed values in the referent.
unsafe { self.assume_initialized() }
}
/// Recalls that `self`'s referent is initialized.
#[doc(hidden)]
#[must_use]
#[inline]
// FIXME(#859): Reconsider the name of this method before making it
// public.
pub fn bikeshed_recall_initialized_immutable(
self,
) -> Ptr<'a, T, (Shared, I::Alignment, Initialized)>
where
T: crate::IntoBytes + crate::Immutable,
I: Invariants<Aliasing = Shared, Validity = Valid>,
{
// SAFETY: Let `O` (for "old") be the set of allowed bit patterns in
// `self`'s referent, and let `N` (for "new") be the set of allowed
// bit patterns in the referent of the returned `Ptr`. `T:
// IntoBytes` and `I: Invariants<Validity = Valid>` ensures that `O`
// cannot contain any uninitialized bit patterns. Since the returned
// `Ptr` has validity `Initialized`, `N` is equal to the set of all
// initialized bit patterns. Thus, `O` is a subset of `N`, and so
// the returned `Ptr`'s validity invariant is upheld.
//
// Since `T: Immutable` and aliasing is `Shared`, the returned `Ptr`
// cannot be used to modify the referent. Before this call, `self`'s
// referent is guaranteed by invariant on `Ptr` to satisfy `self`'s
// validity invariant. Since the returned `Ptr` cannot be used to
// modify the referent, this guarantee cannot be violated by the
// returned `Ptr` (even if `O` is a strict subset of `N`).
unsafe { self.assume_initialized() }
}
/// Checks that `self`'s referent is validly initialized for `T`,
/// returning a `Ptr` with `Valid` on success.
///
/// # Panics
///
/// This method will panic if
/// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
///
/// # Safety
///
/// On error, unsafe code may rely on this method's returned
/// `ValidityError` containing `self`.
#[inline]
pub(crate) fn try_into_valid<R, S>(
mut self,
) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
where
T: TryFromBytes
+ Read<I::Aliasing, R>
+ TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid, S>,
I::Aliasing: Reference,
I: Invariants<Validity = Initialized>,
{
// This call may panic. If that happens, it doesn't cause any soundness
// issues, as we have not generated any invalid state which we need to
// fix before returning.
if T::is_bit_valid(self.reborrow().forget_aligned()) {
// SAFETY: If `T::is_bit_valid`, code may assume that `self`
// contains a bit-valid instance of `T`. By `T:
// TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid>`, so
// long as `self`'s referent conforms to the `Valid` validity
// for `T` (which we just confired), then this transmute is
// sound.
Ok(unsafe { self.assume_valid() })
} else {
Err(ValidityError::new(self))
}
}
/// Forgets that `self`'s referent is validly-aligned for `T`.
#[doc(hidden)]
#[must_use]
#[inline]
pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)> {
// SAFETY: `Unaligned` is less restrictive than `Aligned`.
unsafe { self.assume_invariants() }
}
}
}
/// Casts of the referent type.
mod _casts {
use super::*;
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// Casts to a different (unsized) target type without checking interior
/// mutability.
///
/// Callers should prefer [`cast_unsized`] where possible.
///
/// [`cast_unsized`]: Ptr::cast_unsized
///
/// # Safety
///
/// The caller promises that `u = cast(p)` is a pointer cast with the
/// following properties:
/// - `u` addresses a subset of the bytes addressed by `p`
/// - `u` has the same provenance as `p`
/// - If `I::Aliasing` is [`Shared`], it must not be possible for safe
/// code, operating on a `&T` and `&U` with the same referent
/// simultaneously, to cause undefined behavior
///
/// `cast_unsized_unchecked` guarantees that the pointer passed to
/// `cast` will reference a byte sequence which is either contained
/// inside a single allocated object or is zero sized. In either case,
/// this means that its size will fit in an `isize` and it will not wrap
/// around the address space.
#[doc(hidden)]
#[inline]
pub unsafe fn cast_unsized_unchecked<U, F: FnOnce(NonNull<T>) -> NonNull<U>>(
self,
cast: F,
) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
where
U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized,
{
// SAFETY:
// - The caller promises that `u = cast(p)` is a pointer which
// satisfies:
// - `u` addresses a subset of the bytes addressed by `p`
// - `u` has the same provenance as `p`
// - If `I::Aliasing` is [`Shared`], it must not be possible for
// safe code, operating on a `&T` and `&U` with the same
// referent simultaneously, to cause undefined behavior
// - By `U: CastableFrom<T, I::Validity, I::Validity>`,
// `I::Validity` is either `Uninit` or `Initialized`. In both
// cases, the bit validity `I::Validity` has the same semantics
// regardless of referent type. In other words, the set of allowed
// referent values for `Ptr<T, (_, _, I::Validity)>` and `Ptr<U,
// (_, _, I::Validity)>` are identical. As a consequence, neither
// `self` nor the returned `Ptr` can be used to write values which
// are invalid for the other.
//
// `transmute_unchecked` guarantees that it will only pass pointers
// to `cast` which either reference a zero-sized byte range or
// reference a byte range which is entirely contained inside of an
// allocated object.
unsafe { self.transmute_unchecked(cast) }
}
/// Casts to a different (unsized) target type.
///
/// # Safety
///
/// The caller promises that `u = cast(p)` is a pointer cast with the
/// following properties:
/// - `u` addresses a subset of the bytes addressed by `p`
/// - `u` has the same provenance as `p`
#[doc(hidden)]
#[inline]
pub unsafe fn cast_unsized<U, F, R>(
self,
cast: F,
) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
where
T: MutationCompatible<U, I::Aliasing, I::Validity, I::Validity, R>,
U: 'a + ?Sized + CastableFrom<T, I::Validity, I::Validity>,
F: FnOnce(NonNull<T>) -> NonNull<U>,
{
// SAFETY: Because `T: MutationCompatible<U, I::Aliasing, R>`, one
// of the following holds:
// - `T: Read<I::Aliasing>` and `U: Read<I::Aliasing>`, in which
// case one of the following holds:
// - `I::Aliasing` is `Exclusive`
// - `T` and `U` are both `Immutable`
// - It is sound for safe code to operate on `&T` and `&U` with the
// same referent simultaneously
//
// The caller promises all other safety preconditions.
unsafe { self.cast_unsized_unchecked(cast) }
}
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + KnownLayout + ?Sized,
I: Invariants<Validity = Initialized>,
{
/// Casts this pointer-to-initialized into a pointer-to-bytes.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
where
T: Read<I::Aliasing, R>,
I::Aliasing: Reference,
{
let bytes = match T::size_of_val_raw(self.as_inner().as_non_null()) {
Some(bytes) => bytes,
// SAFETY: `KnownLayout::size_of_val_raw` promises to always
// return `Some` so long as the resulting size fits in a
// `usize`. By invariant on `Ptr`, `self` refers to a range of
// bytes whose size fits in an `isize`, which implies that it
// also fits in a `usize`.
None => unsafe { core::hint::unreachable_unchecked() },
};
// SAFETY:
// - `slice_from_raw_parts_mut` and `.cast` both preserve the
// pointer's address, and `bytes` is the length of `p`, so the
// returned pointer addresses the same bytes as `p`
// - `slice_from_raw_parts_mut` and `.cast` both preserve provenance
let ptr: Ptr<'a, [u8], _> = unsafe {
self.cast_unsized(|p: NonNull<T>| {
let ptr = core::ptr::slice_from_raw_parts_mut(p.cast::<u8>().as_ptr(), bytes);
// SAFETY: `ptr` has the same address as `p`, which is
// non-null.
core::ptr::NonNull::new_unchecked(ptr)
})
};
let ptr = ptr.bikeshed_recall_aligned();
ptr.recall_validity()
}
}
impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
where
T: 'a,
I: Invariants,
{
/// Casts this pointer-to-array into a slice.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
let slice = self.as_inner().as_slice();
// SAFETY: Note that, by post-condition on `PtrInner::as_slice`,
// `slice` refers to the same byte range as `self.as_inner()`.
//
// 0. Thus, `slice` conforms to the aliasing invariant of
// `I::Aliasing` because `self` does.
// 1. By the above lemma, `slice` conforms to the alignment
// invariant of `I::Alignment` because `self` does.
// 2. Since `[T; N]` and `[T]` have the same bit validity [1][2],
// and since `self` and the returned `Ptr` have the same validity
// invariant, neither `self` nor the returned `Ptr` can be used
// to write a value to the referent which violates the other's
// validity invariant.
//
// [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#array-layout:
//
// An array of `[T; N]` has a size of `size_of::<T>() * N` and the
// same alignment of `T`. Arrays are laid out so that the
// zero-based `nth` element of the array is offset from the start
// of the array by `n * size_of::<T>()` bytes.
//
// ...
//
// Slices have the same layout as the section of the array they
// slice.
//
// [2] Per https://doc.rust-lang.org/1.81.0/reference/types/array.html#array-types:
//
// All elements of arrays are always initialized
unsafe { Ptr::from_inner(slice) }
}
}
/// For caller convenience, these methods are generic over alignment
/// invariant. In practice, the referent is always well-aligned, because the
/// alignment of `[u8]` is 1.
impl<'a, I> Ptr<'a, [u8], I>
where
I: Invariants<Validity = Valid>,
{
/// Attempts to cast `self` to a `U` using the given cast type.
///
/// If `U` is a slice DST and pointer metadata (`meta`) is provided,
/// then the cast will only succeed if it would produce an object with
/// the given metadata.
///
/// Returns `None` if the resulting `U` would be invalidly-aligned, if
/// no `U` can fit in `self`, or if the provided pointer metadata
/// describes an invalid instance of `U`. On success, returns a pointer
/// to the largest-possible `U` which fits in `self`.
///
/// # Safety
///
/// The caller may assume that this implementation is correct, and may
/// rely on that assumption for the soundness of their code. In
/// particular, the caller may assume that, if `try_cast_into` returns
/// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
/// non-overlapping byte ranges within `self`, and that `ptr` and
/// `remainder` entirely cover `self`. Finally:
/// - If this is a prefix cast, `ptr` has the same address as `self`.
/// - If this is a suffix cast, `remainder` has the same address as
/// `self`.
#[inline(always)]
pub(crate) fn try_cast_into<U, R>(
self,
cast_type: CastType,
meta: Option<U::PointerMetadata>,
) -> Result<
(Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
CastError<Self, U>,
>
where
I::Aliasing: Reference,
U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
{
let (inner, remainder) =
self.as_inner().try_cast_into(cast_type, meta).map_err(|err| {
err.map_src(|inner|
// SAFETY: `PtrInner::try_cast_into` promises to return its
// original argument on error, which was originally produced
// by `self.as_inner()`, which is guaranteed to satisfy
// `Ptr`'s invariants.
unsafe { Ptr::from_inner(inner) })
})?;
// SAFETY:
// 0. Since `U: Read<I::Aliasing, _>`, either:
// - `I::Aliasing` is `Exclusive`, in which case both `src` and
// `ptr` conform to `Exclusive`
// - `I::Aliasing` is `Shared` and `U` is `Immutable` (we already
// know that `[u8]: Immutable`). In this case, neither `U` nor
// `[u8]` permit mutation, and so `Shared` aliasing is
// satisfied.
// 1. `ptr` conforms to the alignment invariant of `Aligned` because
// it is derived from `try_cast_into`, which promises that the
// object described by `target` is validly aligned for `U`.
// 2. By trait bound, `self` - and thus `target` - is a bit-valid
// `[u8]`. `Ptr<[u8], (_, _, Valid)>` and `Ptr<_, (_, _,
// Initialized)>` have the same bit validity, and so neither
// `self` nor `res` can be used to write a value to the referent
// which violates the other's validity invariant.
let res = unsafe { Ptr::from_inner(inner) };
// SAFETY:
// 0. `self` and `remainder` both have the type `[u8]`. Thus, they
// have `UnsafeCell`s at the same locations. Type casting does
// not affect aliasing.
// 1. `[u8]` has no alignment requirement.
// 2. `self` has validity `Valid` and has type `[u8]`. Since
// `remainder` references a subset of `self`'s referent, it is
// also a bit-valid `[u8]`. Thus, neither `self` nor `remainder`
// can be used to write a value to the referent which violates
// the other's validity invariant.
let remainder = unsafe { Ptr::from_inner(remainder) };
Ok((res, remainder))
}
/// Attempts to cast `self` into a `U`, failing if all of the bytes of
/// `self` cannot be treated as a `U`.
///
/// In particular, this method fails if `self` is not validly-aligned
/// for `U` or if `self`'s size is not a valid size for `U`.
///
/// # Safety
///
/// On success, the caller may assume that the returned pointer
/// references the same byte range as `self`.
#[allow(unused)]
#[inline(always)]
pub(crate) fn try_cast_into_no_leftover<U, R>(
self,
meta: Option<U::PointerMetadata>,
) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
where
I::Aliasing: Reference,
U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
{
// FIXME(#67): Remove this allow. See NonNulSlicelExt for more
// details.
#[allow(unstable_name_collisions)]
match self.try_cast_into(CastType::Prefix, meta) {
Ok((slf, remainder)) => {
if remainder.len() == 0 {
Ok(slf)
} else {
// Undo the cast so we can return the original bytes.
let slf = slf.as_bytes();
// Restore the initial alignment invariant of `self`.
//
// SAFETY: The referent type of `slf` is now equal to
// that of `self`, but the alignment invariants
// nominally differ. Since `slf` and `self` refer to the
// same memory and no actions have been taken that would
// violate the original invariants on `self`, it is
// sound to apply the alignment invariant of `self` onto
// `slf`.
let slf = unsafe { slf.assume_alignment::<I::Alignment>() };
let slf = slf.unify_invariants();
Err(CastError::Size(SizeError::<_, U>::new(slf)))
}
}
Err(err) => Err(err),
}
}
}
impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I>
where
T: 'a + ?Sized,
I: Invariants<Aliasing = Exclusive>,
{
/// Converts this `Ptr` into a pointer to the underlying data.
///
/// This call borrows the `UnsafeCell` mutably (at compile-time) which
/// guarantees that we possess the only reference.
///
/// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
///
/// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
#[must_use]
#[inline(always)]
pub fn get_mut(self) -> Ptr<'a, T, I> {
// SAFETY:
// - The closure uses an `as` cast, which preserves address range
// and provenance.
// - Aliasing is `Exclusive`, and so we are not required to promise
// anything about the locations of `UnsafeCell`s.
// - `UnsafeCell<T>` has the same bit validity as `T` [1].
// Technically the term "representation" doesn't guarantee this,
// but the subsequent sentence in the documentation makes it clear
// that this is the intention.
//
// By invariant on `Validity`, since `T` and `UnsafeCell<T>` have
// the same bit validity, then the set of values which may appear
// in the referent of a `Ptr<T, (_, _, V)>` is the same as the set
// which may appear in the referent of a `Ptr<UnsafeCell<T>, (_,
// _, V)>`. Thus, neither `self` nor `ptr` may be used to write a
// value to the referent which would violate the other's validity
// invariant.
//
// [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
//
// `UnsafeCell<T>` has the same in-memory representation as its
// inner type `T`. A consequence of this guarantee is that it is
// possible to convert between `T` and `UnsafeCell<T>`.
#[allow(clippy::as_conversions)]
let ptr = unsafe { self.transmute_unchecked(cast!()) };
// SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
// and so if `self` is guaranteed to be aligned, then so is the
// returned `Ptr`.
//
// [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
//
// `UnsafeCell<T>` has the same in-memory representation as
// its inner type `T`. A consequence of this guarantee is that
// it is possible to convert between `T` and `UnsafeCell<T>`.
let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
ptr.unify_invariants()
}
}
}
/// Projections through the referent.
mod _project {
use super::*;
impl<'a, T, I> Ptr<'a, [T], I>
where
T: 'a,
I: Invariants,
I::Aliasing: Reference,
{
/// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
// SAFETY:
// 0. `elem` conforms to the aliasing invariant of `I::Aliasing`
// because projection does not impact the aliasing invariant.
// 1. `elem`, conditionally, conforms to the validity invariant of
// `I::Alignment`. If `elem` is projected from data well-aligned
// for `[T]`, `elem` will be valid for `T`.
// 2. FIXME: Need to cite facts about `[T]`'s layout (same for the
// preceding points)
self.as_inner().iter().map(|elem| unsafe { Ptr::from_inner(elem) })
}
}
#[allow(clippy::needless_lifetimes)]
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized + KnownLayout<PointerMetadata = usize>,
I: Invariants,
{
/// The number of slice elements in the object referenced by `self`.
pub(crate) fn len(&self) -> usize {
self.as_inner().meta().get()
}
}
}
#[cfg(test)]
mod tests {
use core::mem::{self, MaybeUninit};
use super::*;
#[allow(unused)] // Needed on our MSRV, but considered unused on later toolchains.
use crate::util::AsAddress;
use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};
mod test_ptr_try_cast_into_soundness {
use super::*;
// This test is designed so that if `Ptr::try_cast_into_xxx` are
// buggy, it will manifest as unsoundness that Miri can detect.
// - If `size_of::<T>() == 0`, `N == 4`
// - Else, `N == 4 * size_of::<T>()`
//
// Each test will be run for each metadata in `metas`.
fn test<T, I, const N: usize>(metas: I)
where
T: ?Sized + KnownLayout + Immutable + FromBytes,
I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
{
let mut bytes = [MaybeUninit::<u8>::uninit(); N];
let initialized = [MaybeUninit::new(0u8); N];
for start in 0..=bytes.len() {
for end in start..=bytes.len() {
// Set all bytes to uninitialized other than those in
// the range we're going to pass to `try_cast_from`.
// This allows Miri to detect out-of-bounds reads
// because they read uninitialized memory. Without this,
// some out-of-bounds reads would still be in-bounds of
// `bytes`, and so might spuriously be accepted.
bytes = [MaybeUninit::<u8>::uninit(); N];
let bytes = &mut bytes[start..end];
// Initialize only the byte range we're going to pass to
// `try_cast_from`.
bytes.copy_from_slice(&initialized[start..end]);
let bytes = {
let bytes: *const [MaybeUninit<u8>] = bytes;
#[allow(clippy::as_conversions)]
let bytes = bytes as *const [u8];
// SAFETY: We just initialized these bytes to valid
// `u8`s.
unsafe { &*bytes }
};
// SAFETY: The bytes in `slf` must be initialized.
unsafe fn validate_and_get_len<
T: ?Sized + KnownLayout + FromBytes + Immutable,
>(
slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
) -> usize {
let t = slf.recall_validity().as_ref();
let bytes = {
let len = mem::size_of_val(t);
let t: *const T = t;
// SAFETY:
// - We know `t`'s bytes are all initialized
// because we just read it from `slf`, which
// points to an initialized range of bytes. If
// there's a bug and this doesn't hold, then
// that's exactly what we're hoping Miri will
// catch!
// - Since `T: FromBytes`, `T` doesn't contain
// any `UnsafeCell`s, so it's okay for `t: T`
// and a `&[u8]` to the same memory to be
// alive concurrently.
unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
};
// This assertion ensures that `t`'s bytes are read
// and compared to another value, which in turn
// ensures that Miri gets a chance to notice if any
// of `t`'s bytes are uninitialized, which they
// shouldn't be (see the comment above).
assert_eq!(bytes, vec![0u8; bytes.len()]);
mem::size_of_val(t)
}
for meta in metas.clone().into_iter() {
for cast_type in [CastType::Prefix, CastType::Suffix] {
if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
.try_cast_into::<T, BecauseImmutable>(cast_type, meta)
{
// SAFETY: All bytes in `bytes` have been
// initialized.
let len = unsafe { validate_and_get_len(slf) };
assert_eq!(remaining.len(), bytes.len() - len);
#[allow(unstable_name_collisions)]
let bytes_addr = bytes.as_ptr().addr();
#[allow(unstable_name_collisions)]
let remaining_addr =
remaining.as_inner().as_non_null().as_ptr().addr();
match cast_type {
CastType::Prefix => {
assert_eq!(remaining_addr, bytes_addr + len)
}
CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
}
if let Some(want) = meta {
let got = KnownLayout::pointer_to_metadata(
slf.as_inner().as_non_null().as_ptr(),
);
assert_eq!(got, want);
}
}
}
if let Ok(slf) = Ptr::from_ref(bytes)
.try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
{
// SAFETY: All bytes in `bytes` have been
// initialized.
let len = unsafe { validate_and_get_len(slf) };
assert_eq!(len, bytes.len());
if let Some(want) = meta {
let got = KnownLayout::pointer_to_metadata(
slf.as_inner().as_non_null().as_ptr(),
);
assert_eq!(got, want);
}
}
}
}
}
}
#[derive(FromBytes, KnownLayout, Immutable)]
#[repr(C)]
struct SliceDst<T> {
a: u8,
trailing: [T],
}
// Each test case becomes its own `#[test]` function. We do this because
// this test in particular takes far, far longer to execute under Miri
// than all of our other tests combined. Previously, we had these
// execute sequentially in a single test function. We run Miri tests in
// parallel in CI, but this test being sequential meant that most of
// that parallelism was wasted, as all other tests would finish in a
// fraction of the total execution time, leaving this test to execute on
// a single thread for the remainder of the test. By putting each test
// case in its own function, we permit better use of available
// parallelism.
macro_rules! test {
($test_name:ident: $ty:ty) => {
#[test]
#[allow(non_snake_case)]
fn $test_name() {
const S: usize = core::mem::size_of::<$ty>();
const N: usize = if S == 0 { 4 } else { S * 4 };
test::<$ty, _, N>([None]);
// If `$ty` is a ZST, then we can't pass `None` as the
// pointer metadata, or else computing the correct trailing
// slice length will panic.
if S == 0 {
test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
} else {
test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
}
}
};
($ty:ident) => {
test!($ty: $ty);
};
($($ty:ident),*) => { $(test!($ty);)* }
}
test!(empty_tuple: ());
test!(u8, u16, u32, u64, u128, usize, AU64);
test!(i8, i16, i32, i64, i128, isize);
test!(f32, f64);
}
#[test]
fn test_try_cast_into_explicit_count() {
macro_rules! test {
($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
let bytes = [0u8; $bytes];
let ptr = Ptr::from_ref(&bytes[..]);
let res =
ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
if let Some(expect) = $expect {
let (ptr, _) = res.unwrap();
assert_eq!(
KnownLayout::pointer_to_metadata(ptr.as_inner().as_non_null().as_ptr()),
expect
);
} else {
let _ = res.unwrap_err();
}
}};
}
#[derive(KnownLayout, Immutable)]
#[repr(C)]
struct ZstDst {
u: [u8; 8],
slc: [()],
}
test!(ZstDst, 8, 0, Some(0));
test!(ZstDst, 7, 0, None);
test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
test!(ZstDst, 7, usize::MAX, None);
#[derive(KnownLayout, Immutable)]
#[repr(C)]
struct Dst {
u: [u8; 8],
slc: [u8],
}
test!(Dst, 8, 0, Some(0));
test!(Dst, 7, 0, None);
test!(Dst, 9, 1, Some(1));
test!(Dst, 8, 1, None);
// If we didn't properly check for overflow, this would cause the
// metadata to overflow to 0, and thus the cast would spuriously
// succeed.
test!(Dst, 8, usize::MAX - 8 + 1, None);
}
}