blob: b59fdbf790b4d92e5e51cbc5fe0a99be8b58d828 [file] [log] [blame]
// Copyright 2018-2020 Developers of the Rand project.
// Copyright 2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A distribution uniformly sampling numbers within a given range.
//!
//! [`Uniform`] is the standard distribution to sample uniformly from a range;
//! e.g. `Uniform::new_inclusive(1, 6).unwrap()` can sample integers from 1 to 6, like a
//! standard die. [`Rng::random_range`] is implemented over [`Uniform`].
//!
//! # Example usage
//!
//! ```
//! use rand::Rng;
//! use rand::distr::Uniform;
//!
//! let mut rng = rand::rng();
//! let side = Uniform::new(-10.0, 10.0).unwrap();
//!
//! // sample between 1 and 10 points
//! for _ in 0..rng.random_range(1..=10) {
//! // sample a point from the square with sides -10 - 10 in two dimensions
//! let (x, y) = (rng.sample(side), rng.sample(side));
//! println!("Point: {}, {}", x, y);
//! }
//! ```
//!
//! # Extending `Uniform` to support a custom type
//!
//! To extend [`Uniform`] to support your own types, write a back-end which
//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
//! helper trait to "register" your back-end. See the `MyF32` example below.
//!
//! At a minimum, the back-end needs to store any parameters needed for sampling
//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
//! Those methods should include an assertion to check the range is valid (i.e.
//! `low < high`). The example below merely wraps another back-end.
//!
//! The `new`, `new_inclusive`, `sample_single` and `sample_single_inclusive`
//! functions use arguments of
//! type `SampleBorrow<X>` to support passing in values by reference or
//! by value. In the implementation of these functions, you can choose to
//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
//! to copy or clone the value, whatever is appropriate for your type.
//!
//! ```
//! use rand::prelude::*;
//! use rand::distr::uniform::{Uniform, SampleUniform,
//! UniformSampler, UniformFloat, SampleBorrow, Error};
//!
//! struct MyF32(f32);
//!
//! #[derive(Clone, Copy, Debug)]
//! struct UniformMyF32(UniformFloat<f32>);
//!
//! impl UniformSampler for UniformMyF32 {
//! type X = MyF32;
//!
//! fn new<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
//! where B1: SampleBorrow<Self::X> + Sized,
//! B2: SampleBorrow<Self::X> + Sized
//! {
//! UniformFloat::<f32>::new(low.borrow().0, high.borrow().0).map(UniformMyF32)
//! }
//! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
//! where B1: SampleBorrow<Self::X> + Sized,
//! B2: SampleBorrow<Self::X> + Sized
//! {
//! UniformFloat::<f32>::new_inclusive(low.borrow().0, high.borrow().0).map(UniformMyF32)
//! }
//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
//! MyF32(self.0.sample(rng))
//! }
//! }
//!
//! impl SampleUniform for MyF32 {
//! type Sampler = UniformMyF32;
//! }
//!
//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
//! let uniform = Uniform::new(low, high).unwrap();
//! let x = uniform.sample(&mut rand::rng());
//! ```
//!
//! [`SampleUniform`]: crate::distr::uniform::SampleUniform
//! [`UniformSampler`]: crate::distr::uniform::UniformSampler
//! [`UniformInt`]: crate::distr::uniform::UniformInt
//! [`UniformFloat`]: crate::distr::uniform::UniformFloat
//! [`UniformDuration`]: crate::distr::uniform::UniformDuration
//! [`SampleBorrow::borrow`]: crate::distr::uniform::SampleBorrow::borrow
#[path = "uniform_float.rs"]
mod float;
#[doc(inline)]
pub use float::UniformFloat;
#[path = "uniform_int.rs"]
mod int;
#[doc(inline)]
pub use int::{UniformInt, UniformUsize};
#[path = "uniform_other.rs"]
mod other;
#[doc(inline)]
pub use other::{UniformChar, UniformDuration};
use core::fmt;
use core::ops::{Range, RangeInclusive, RangeTo, RangeToInclusive};
use crate::distr::Distribution;
use crate::{Rng, RngCore};
/// Error type returned from [`Uniform::new`] and `new_inclusive`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `low > high`, or equal in case of exclusive range.
EmptyRange,
/// Input or range `high - low` is non-finite. Not relevant to integer types.
NonFinite,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::EmptyRange => "low > high (or equal if exclusive) in uniform distribution",
Error::NonFinite => "Non-finite range in uniform distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// Sample values uniformly between two bounds.
///
/// # Construction
///
/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
/// distribution sampling from the given `low` and `high` limits. `Uniform` may
/// also be constructed via [`TryFrom`] as in `Uniform::try_from(1..=6).unwrap()`.
///
/// Constructors may do extra work up front to allow faster sampling of multiple
/// values. Where only a single sample is required it is suggested to use
/// [`Rng::random_range`] or one of the `sample_single` methods instead.
///
/// When sampling from a constant range, many calculations can happen at
/// compile-time and all methods should be fast; for floating-point ranges and
/// the full range of integer types, this should have comparable performance to
/// the [`StandardUniform`](super::StandardUniform) distribution.
///
/// # Provided implementations
///
/// - `char` ([`UniformChar`]): samples a range over the implementation for `u32`
/// - `f32`, `f64` ([`UniformFloat`]): samples approximately uniformly within a
/// range; bias may be present in the least-significant bit of the significand
/// and the limits of the input range may be sampled even when an open
/// (exclusive) range is used
/// - Integer types ([`UniformInt`]) may show a small bias relative to the
/// expected uniform distribution of output. In the worst case, bias affects
/// 1 in `2^n` samples where n is 56 (`i8` and `u8`), 48 (`i16` and `u16`), 96
/// (`i32` and `u32`), 64 (`i64` and `u64`), 128 (`i128` and `u128`).
/// The `unbiased` feature flag fixes this bias.
/// - `usize` ([`UniformUsize`]) is handled specially, using the `u32`
/// implementation where possible to enable portable results across 32-bit and
/// 64-bit CPU architectures.
/// - `Duration` ([`UniformDuration`]): samples a range over the implementation
/// for `u32` or `u64`
/// - SIMD types (requires [`simd_support`] feature) like x86's [`__m128i`]
/// and `std::simd`'s [`u32x4`], [`f32x4`] and [`mask32x4`] types are
/// effectively arrays of integer or floating-point types. Each lane is
/// sampled independently from its own range, potentially with more efficient
/// random-bit-usage than would be achieved with sequential sampling.
///
/// # Example
///
/// ```
/// use rand::distr::{Distribution, Uniform};
///
/// let between = Uniform::try_from(10..10000).unwrap();
/// let mut rng = rand::rng();
/// let mut sum = 0;
/// for _ in 0..1000 {
/// sum += between.sample(&mut rng);
/// }
/// println!("{}", sum);
/// ```
///
/// For a single sample, [`Rng::random_range`] may be preferred:
///
/// ```
/// use rand::Rng;
///
/// let mut rng = rand::rng();
/// println!("{}", rng.random_range(0..10));
/// ```
///
/// [`new`]: Uniform::new
/// [`new_inclusive`]: Uniform::new_inclusive
/// [`Rng::random_range`]: Rng::random_range
/// [`__m128i`]: https://doc.rust-lang.org/core/arch/x86/struct.__m128i.html
/// [`u32x4`]: std::simd::u32x4
/// [`f32x4`]: std::simd::f32x4
/// [`mask32x4`]: std::simd::mask32x4
/// [`simd_support`]: https://github.com/rust-random/rand#crate-features
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound(serialize = "X::Sampler: Serialize")))]
#[cfg_attr(
feature = "serde",
serde(bound(deserialize = "X::Sampler: Deserialize<'de>"))
)]
pub struct Uniform<X: SampleUniform>(X::Sampler);
impl<X: SampleUniform> Uniform<X> {
/// Create a new `Uniform` instance, which samples uniformly from the half
/// open range `[low, high)` (excluding `high`).
///
/// For discrete types (e.g. integers), samples will always be strictly less
/// than `high`. For (approximations of) continuous types (e.g. `f32`, `f64`),
/// samples may equal `high` due to loss of precision but may not be
/// greater than `high`.
///
/// Fails if `low >= high`, or if `low`, `high` or the range `high - low` is
/// non-finite. In release mode, only the range is checked.
pub fn new<B1, B2>(low: B1, high: B2) -> Result<Uniform<X>, Error>
where
B1: SampleBorrow<X> + Sized,
B2: SampleBorrow<X> + Sized,
{
X::Sampler::new(low, high).map(Uniform)
}
/// Create a new `Uniform` instance, which samples uniformly from the closed
/// range `[low, high]` (inclusive).
///
/// Fails if `low > high`, or if `low`, `high` or the range `high - low` is
/// non-finite. In release mode, only the range is checked.
pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Uniform<X>, Error>
where
B1: SampleBorrow<X> + Sized,
B2: SampleBorrow<X> + Sized,
{
X::Sampler::new_inclusive(low, high).map(Uniform)
}
}
impl<X: SampleUniform> Distribution<X> for Uniform<X> {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
self.0.sample(rng)
}
}
/// Helper trait for creating objects using the correct implementation of
/// [`UniformSampler`] for the sampling type.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// [module documentation]: crate::distr::uniform
pub trait SampleUniform: Sized {
/// The `UniformSampler` implementation supporting type `X`.
type Sampler: UniformSampler<X = Self>;
}
/// Helper trait handling actual uniform sampling.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// Implementation of [`sample_single`] is optional, and is only useful when
/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
///
/// [module documentation]: crate::distr::uniform
/// [`sample_single`]: UniformSampler::sample_single
pub trait UniformSampler: Sized {
/// The type sampled by this implementation.
type X;
/// Construct self, with inclusive lower bound and exclusive upper bound `[low, high)`.
///
/// For discrete types (e.g. integers), samples will always be strictly less
/// than `high`. For (approximations of) continuous types (e.g. `f32`, `f64`),
/// samples may equal `high` due to loss of precision but may not be
/// greater than `high`.
///
/// Usually users should not call this directly but prefer to use
/// [`Uniform::new`].
fn new<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized;
/// Construct self, with inclusive bounds `[low, high]`.
///
/// Usually users should not call this directly but prefer to use
/// [`Uniform::new_inclusive`].
fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized;
/// Sample a value.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;
/// Sample a single value uniformly from a range with inclusive lower bound
/// and exclusive upper bound `[low, high)`.
///
/// For discrete types (e.g. integers), samples will always be strictly less
/// than `high`. For (approximations of) continuous types (e.g. `f32`, `f64`),
/// samples may equal `high` due to loss of precision but may not be
/// greater than `high`.
///
/// By default this is implemented using
/// `UniformSampler::new(low, high).sample(rng)`. However, for some types
/// more optimal implementations for single usage may be provided via this
/// method (which is the case for integers and floats).
/// Results may not be identical.
///
/// Note that to use this method in a generic context, the type needs to be
/// retrieved via `SampleUniform::Sampler` as follows:
/// ```
/// use rand::distr::uniform::{SampleUniform, UniformSampler};
/// # #[allow(unused)]
/// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T {
/// let mut rng = rand::rng();
/// <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng).unwrap()
/// }
/// ```
fn sample_single<R: Rng + ?Sized, B1, B2>(
low: B1,
high: B2,
rng: &mut R,
) -> Result<Self::X, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let uniform: Self = UniformSampler::new(low, high)?;
Ok(uniform.sample(rng))
}
/// Sample a single value uniformly from a range with inclusive lower bound
/// and inclusive upper bound `[low, high]`.
///
/// By default this is implemented using
/// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for
/// some types more optimal implementations for single usage may be provided
/// via this method.
/// Results may not be identical.
fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(
low: B1,
high: B2,
rng: &mut R,
) -> Result<Self::X, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let uniform: Self = UniformSampler::new_inclusive(low, high)?;
Ok(uniform.sample(rng))
}
}
impl<X: SampleUniform> TryFrom<Range<X>> for Uniform<X> {
type Error = Error;
fn try_from(r: Range<X>) -> Result<Uniform<X>, Error> {
Uniform::new(r.start, r.end)
}
}
impl<X: SampleUniform> TryFrom<RangeInclusive<X>> for Uniform<X> {
type Error = Error;
fn try_from(r: ::core::ops::RangeInclusive<X>) -> Result<Uniform<X>, Error> {
Uniform::new_inclusive(r.start(), r.end())
}
}
/// Helper trait similar to [`Borrow`] but implemented
/// only for [`SampleUniform`] and references to [`SampleUniform`]
/// in order to resolve ambiguity issues.
///
/// [`Borrow`]: std::borrow::Borrow
pub trait SampleBorrow<Borrowed> {
/// Immutably borrows from an owned value. See [`Borrow::borrow`]
///
/// [`Borrow::borrow`]: std::borrow::Borrow::borrow
fn borrow(&self) -> &Borrowed;
}
impl<Borrowed> SampleBorrow<Borrowed> for Borrowed
where
Borrowed: SampleUniform,
{
#[inline(always)]
fn borrow(&self) -> &Borrowed {
self
}
}
impl<Borrowed> SampleBorrow<Borrowed> for &Borrowed
where
Borrowed: SampleUniform,
{
#[inline(always)]
fn borrow(&self) -> &Borrowed {
self
}
}
/// Range that supports generating a single sample efficiently.
///
/// Any type implementing this trait can be used to specify the sampled range
/// for `Rng::random_range`.
pub trait SampleRange<T> {
/// Generate a sample from the given range.
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error>;
/// Check whether the range is empty.
fn is_empty(&self) -> bool;
}
impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error> {
T::Sampler::sample_single(self.start, self.end, rng)
}
#[inline]
fn is_empty(&self) -> bool {
!(self.start < self.end)
}
}
impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error> {
T::Sampler::sample_single_inclusive(self.start(), self.end(), rng)
}
#[inline]
fn is_empty(&self) -> bool {
!(self.start() <= self.end())
}
}
macro_rules! impl_sample_range_u {
($t:ty) => {
impl SampleRange<$t> for RangeTo<$t> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<$t, Error> {
<$t as SampleUniform>::Sampler::sample_single(0, self.end, rng)
}
#[inline]
fn is_empty(&self) -> bool {
0 == self.end
}
}
impl SampleRange<$t> for RangeToInclusive<$t> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<$t, Error> {
<$t as SampleUniform>::Sampler::sample_single_inclusive(0, self.end, rng)
}
#[inline]
fn is_empty(&self) -> bool {
false
}
}
};
}
impl_sample_range_u!(u8);
impl_sample_range_u!(u16);
impl_sample_range_u!(u32);
impl_sample_range_u!(u64);
impl_sample_range_u!(u128);
impl_sample_range_u!(usize);
#[cfg(test)]
mod tests {
use super::*;
use core::time::Duration;
#[test]
#[cfg(feature = "serde")]
fn test_uniform_serialization() {
let unit_box: Uniform<i32> = Uniform::new(-1, 1).unwrap();
let de_unit_box: Uniform<i32> =
bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
assert_eq!(unit_box.0, de_unit_box.0);
let unit_box: Uniform<f32> = Uniform::new(-1., 1.).unwrap();
let de_unit_box: Uniform<f32> =
bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
assert_eq!(unit_box.0, de_unit_box.0);
}
#[test]
fn test_custom_uniform() {
use crate::distr::uniform::{SampleBorrow, SampleUniform, UniformFloat, UniformSampler};
#[derive(Clone, Copy, PartialEq, PartialOrd)]
struct MyF32 {
x: f32,
}
#[derive(Clone, Copy, Debug)]
struct UniformMyF32(UniformFloat<f32>);
impl UniformSampler for UniformMyF32 {
type X = MyF32;
fn new<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
UniformFloat::<f32>::new(low.borrow().x, high.borrow().x).map(UniformMyF32)
}
fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
UniformSampler::new(low, high)
}
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
MyF32 {
x: self.0.sample(rng),
}
}
}
impl SampleUniform for MyF32 {
type Sampler = UniformMyF32;
}
let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 });
let uniform = Uniform::new(low, high).unwrap();
let mut rng = crate::test::rng(804);
for _ in 0..100 {
let x: MyF32 = rng.sample(uniform);
assert!(low <= x && x < high);
}
}
#[test]
fn value_stability() {
fn test_samples<T: SampleUniform + Copy + fmt::Debug + PartialEq>(
lb: T,
ub: T,
expected_single: &[T],
expected_multiple: &[T],
) where
Uniform<T>: Distribution<T>,
{
let mut rng = crate::test::rng(897);
let mut buf = [lb; 3];
for x in &mut buf {
*x = T::Sampler::sample_single(lb, ub, &mut rng).unwrap();
}
assert_eq!(&buf, expected_single);
let distr = Uniform::new(lb, ub).unwrap();
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(&buf, expected_multiple);
}
test_samples(
0f32,
1e-2f32,
&[0.0003070104, 0.0026630748, 0.00979833],
&[0.008194133, 0.00398172, 0.007428536],
);
test_samples(
-1e10f64,
1e10f64,
&[-4673848682.871551, 6388267422.932352, 4857075081.198343],
&[1173375212.1808167, 1917642852.109581, 2365076174.3153973],
);
test_samples(
Duration::new(2, 0),
Duration::new(4, 0),
&[
Duration::new(2, 532615131),
Duration::new(3, 638826742),
Duration::new(3, 485707508),
],
&[
Duration::new(3, 117337521),
Duration::new(3, 191764285),
Duration::new(3, 236507617),
],
);
}
#[test]
fn uniform_distributions_can_be_compared() {
assert_eq!(
Uniform::new(1.0, 2.0).unwrap(),
Uniform::new(1.0, 2.0).unwrap()
);
// To cover UniformInt
assert_eq!(
Uniform::new(1_u32, 2_u32).unwrap(),
Uniform::new(1_u32, 2_u32).unwrap()
);
}
}