| //! Functions and filters for the sampling of pixels. |
| |
| // See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf |
| // for some of the theory behind image scaling and convolution |
| |
| use std::f32; |
| |
| use num_traits::{NumCast, ToPrimitive, Zero}; |
| #[cfg(feature = "serde")] |
| use serde::{Deserialize, Serialize}; |
| |
| use crate::image::{GenericImage, GenericImageView}; |
| use crate::traits::{Enlargeable, Pixel, Primitive}; |
| use crate::utils::clamp; |
| use crate::{ImageBuffer, Rgba32FImage}; |
| |
| /// Available Sampling Filters. |
| /// |
| /// ## Examples |
| /// |
| /// To test the different sampling filters on a real example, you can find two |
| /// examples called |
| /// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown) |
| /// and |
| /// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup) |
| /// in the `examples` directory of the crate source code. |
| /// |
| /// Here is a 3.58 MiB |
| /// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg) |
| /// that has been scaled down to 300x225 px: |
| /// |
| /// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` --> |
| /// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;"> |
| /// <div style="margin: 0 8px 8px 0;"> |
| /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br> |
| /// Nearest Neighbor |
| /// </div> |
| /// <div style="margin: 0 8px 8px 0;"> |
| /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br> |
| /// Linear: Triangle |
| /// </div> |
| /// <div style="margin: 0 8px 8px 0;"> |
| /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br> |
| /// Cubic: Catmull-Rom |
| /// </div> |
| /// <div style="margin: 0 8px 8px 0;"> |
| /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br> |
| /// Gaussian |
| /// </div> |
| /// <div style="margin: 0 8px 8px 0;"> |
| /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br> |
| /// Lanczos with window 3 |
| /// </div> |
| /// </div> |
| /// |
| /// ## Speed |
| /// |
| /// Time required to create each of the examples above, tested on an Intel |
| /// i7-4770 CPU with Rust 1.37 in release mode: |
| /// |
| /// <table style="width: auto;"> |
| /// <tr> |
| /// <th>Nearest</th> |
| /// <td>31 ms</td> |
| /// </tr> |
| /// <tr> |
| /// <th>Triangle</th> |
| /// <td>414 ms</td> |
| /// </tr> |
| /// <tr> |
| /// <th>CatmullRom</th> |
| /// <td>817 ms</td> |
| /// </tr> |
| /// <tr> |
| /// <th>Gaussian</th> |
| /// <td>1180 ms</td> |
| /// </tr> |
| /// <tr> |
| /// <th>Lanczos3</th> |
| /// <td>1170 ms</td> |
| /// </tr> |
| /// </table> |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] |
| pub enum FilterType { |
| /// Nearest Neighbor |
| Nearest, |
| |
| /// Linear Filter |
| Triangle, |
| |
| /// Cubic Filter |
| CatmullRom, |
| |
| /// Gaussian Filter |
| Gaussian, |
| |
| /// Lanczos with window 3 |
| Lanczos3, |
| } |
| |
| /// A Representation of a separable filter. |
| pub(crate) struct Filter<'a> { |
| /// The filter's filter function. |
| pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>, |
| |
| /// The window on which this filter operates. |
| pub(crate) support: f32, |
| } |
| |
| struct FloatNearest(f32); |
| |
| // to_i64, to_u64, and to_f64 implicitly affect all other lower conversions. |
| // Note that to_f64 by default calls to_i64 and thus needs to be overridden. |
| impl ToPrimitive for FloatNearest { |
| // to_{i,u}64 is required, to_{i,u}{8,16} are useful. |
| // If a usecase for full 32 bits is found its trivial to add |
| fn to_i8(&self) -> Option<i8> { |
| self.0.round().to_i8() |
| } |
| fn to_i16(&self) -> Option<i16> { |
| self.0.round().to_i16() |
| } |
| fn to_i64(&self) -> Option<i64> { |
| self.0.round().to_i64() |
| } |
| fn to_u8(&self) -> Option<u8> { |
| self.0.round().to_u8() |
| } |
| fn to_u16(&self) -> Option<u16> { |
| self.0.round().to_u16() |
| } |
| fn to_u64(&self) -> Option<u64> { |
| self.0.round().to_u64() |
| } |
| fn to_f64(&self) -> Option<f64> { |
| self.0.to_f64() |
| } |
| } |
| |
| // sinc function: the ideal sampling filter. |
| fn sinc(t: f32) -> f32 { |
| let a = t * f32::consts::PI; |
| |
| if t == 0.0 { |
| 1.0 |
| } else { |
| a.sin() / a |
| } |
| } |
| |
| // lanczos kernel function. A windowed sinc function. |
| fn lanczos(x: f32, t: f32) -> f32 { |
| if x.abs() < t { |
| sinc(x) * sinc(x / t) |
| } else { |
| 0.0 |
| } |
| } |
| |
| // Calculate a splice based on the b and c parameters. |
| // from authors Mitchell and Netravali. |
| fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 { |
| let a = x.abs(); |
| |
| let k = if a < 1.0 { |
| (12.0 - 9.0 * b - 6.0 * c) * a.powi(3) |
| + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2) |
| + (6.0 - 2.0 * b) |
| } else if a < 2.0 { |
| (-b - 6.0 * c) * a.powi(3) |
| + (6.0 * b + 30.0 * c) * a.powi(2) |
| + (-12.0 * b - 48.0 * c) * a |
| + (8.0 * b + 24.0 * c) |
| } else { |
| 0.0 |
| }; |
| |
| k / 6.0 |
| } |
| |
| /// The Gaussian Function. |
| /// ```r``` is the standard deviation. |
| pub(crate) fn gaussian(x: f32, r: f32) -> f32 { |
| ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp() |
| } |
| |
| /// Calculate the lanczos kernel with a window of 3 |
| pub(crate) fn lanczos3_kernel(x: f32) -> f32 { |
| lanczos(x, 3.0) |
| } |
| |
| /// Calculate the gaussian function with a |
| /// standard deviation of 0.5 |
| pub(crate) fn gaussian_kernel(x: f32) -> f32 { |
| gaussian(x, 0.5) |
| } |
| |
| /// Calculate the Catmull-Rom cubic spline. |
| /// Also known as a form of `BiCubic` sampling in two dimensions. |
| pub(crate) fn catmullrom_kernel(x: f32) -> f32 { |
| bc_cubic_spline(x, 0.0, 0.5) |
| } |
| |
| /// Calculate the triangle function. |
| /// Also known as `BiLinear` sampling in two dimensions. |
| pub(crate) fn triangle_kernel(x: f32) -> f32 { |
| if x.abs() < 1.0 { |
| 1.0 - x.abs() |
| } else { |
| 0.0 |
| } |
| } |
| |
| /// Calculate the box kernel. |
| /// Only pixels inside the box should be considered, and those |
| /// contribute equally. So this method simply returns 1. |
| pub(crate) fn box_kernel(_x: f32) -> f32 { |
| 1.0 |
| } |
| |
| // Sample the rows of the supplied image using the provided filter. |
| // The height of the image remains unchanged. |
| // ```new_width``` is the desired width of the new image |
| // ```filter``` is the filter to use for sampling. |
| // ```image``` is not necessarily Rgba and the order of channels is passed through. |
| // |
| // Note: if an empty image is passed in, panics unless the image is truly empty. |
| fn horizontal_sample<P, S>( |
| image: &Rgba32FImage, |
| new_width: u32, |
| filter: &mut Filter, |
| ) -> ImageBuffer<P, Vec<S>> |
| where |
| P: Pixel<Subpixel = S> + 'static, |
| S: Primitive + 'static, |
| { |
| let (width, height) = image.dimensions(); |
| // This is protection against a memory usage similar to #2340. See `vertical_sample`. |
| assert!( |
| // Checks the implication: (width == 0) -> (height == 0) |
| width != 0 || height == 0, |
| "Unexpected prior allocation size. This case should have been handled by the caller" |
| ); |
| |
| let mut out = ImageBuffer::new(new_width, height); |
| let mut ws = Vec::new(); |
| |
| let max: f32 = NumCast::from(S::DEFAULT_MAX_VALUE).unwrap(); |
| let min: f32 = NumCast::from(S::DEFAULT_MIN_VALUE).unwrap(); |
| let ratio = width as f32 / new_width as f32; |
| let sratio = if ratio < 1.0 { 1.0 } else { ratio }; |
| let src_support = filter.support * sratio; |
| |
| for outx in 0..new_width { |
| // Find the point in the input image corresponding to the centre |
| // of the current pixel in the output image. |
| let inputx = (outx as f32 + 0.5) * ratio; |
| |
| // Left and right are slice bounds for the input pixels relevant |
| // to the output pixel we are calculating. Pixel x is relevant |
| // if and only if (x >= left) && (x < right). |
| |
| // Invariant: 0 <= left < right <= width |
| |
| let left = (inputx - src_support).floor() as i64; |
| let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32; |
| |
| let right = (inputx + src_support).ceil() as i64; |
| let right = clamp( |
| right, |
| <i64 as From<_>>::from(left) + 1, |
| <i64 as From<_>>::from(width), |
| ) as u32; |
| |
| // Go back to left boundary of pixel, to properly compare with i |
| // below, as the kernel treats the centre of a pixel as 0. |
| let inputx = inputx - 0.5; |
| |
| ws.clear(); |
| let mut sum = 0.0; |
| for i in left..right { |
| let w = (filter.kernel)((i as f32 - inputx) / sratio); |
| ws.push(w); |
| sum += w; |
| } |
| ws.iter_mut().for_each(|w| *w /= sum); |
| |
| for y in 0..height { |
| let mut t = (0.0, 0.0, 0.0, 0.0); |
| |
| for (i, w) in ws.iter().enumerate() { |
| let p = image.get_pixel(left + i as u32, y); |
| |
| #[allow(deprecated)] |
| let vec = p.channels4(); |
| |
| t.0 += vec.0 * w; |
| t.1 += vec.1 * w; |
| t.2 += vec.2 * w; |
| t.3 += vec.3 * w; |
| } |
| |
| #[allow(deprecated)] |
| let t = Pixel::from_channels( |
| NumCast::from(FloatNearest(clamp(t.0, min, max))).unwrap(), |
| NumCast::from(FloatNearest(clamp(t.1, min, max))).unwrap(), |
| NumCast::from(FloatNearest(clamp(t.2, min, max))).unwrap(), |
| NumCast::from(FloatNearest(clamp(t.3, min, max))).unwrap(), |
| ); |
| |
| out.put_pixel(outx, y, t); |
| } |
| } |
| |
| out |
| } |
| |
| /// Linearly sample from an image using coordinates in [0, 1]. |
| pub fn sample_bilinear<P: Pixel>( |
| img: &impl GenericImageView<Pixel = P>, |
| u: f32, |
| v: f32, |
| ) -> Option<P> { |
| if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) { |
| return None; |
| } |
| |
| let (w, h) = img.dimensions(); |
| if w == 0 || h == 0 { |
| return None; |
| } |
| |
| let ui = w as f32 * u - 0.5; |
| let vi = h as f32 * v - 0.5; |
| interpolate_bilinear( |
| img, |
| ui.max(0.).min((w - 1) as f32), |
| vi.max(0.).min((h - 1) as f32), |
| ) |
| } |
| |
| /// Sample from an image using coordinates in [0, 1], taking the nearest coordinate. |
| pub fn sample_nearest<P: Pixel>( |
| img: &impl GenericImageView<Pixel = P>, |
| u: f32, |
| v: f32, |
| ) -> Option<P> { |
| if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) { |
| return None; |
| } |
| |
| let (w, h) = img.dimensions(); |
| let ui = w as f32 * u - 0.5; |
| let ui = ui.max(0.).min((w.saturating_sub(1)) as f32); |
| |
| let vi = h as f32 * v - 0.5; |
| let vi = vi.max(0.).min((h.saturating_sub(1)) as f32); |
| interpolate_nearest(img, ui, vi) |
| } |
| |
| /// Sample from an image using coordinates in [0, w-1] and [0, h-1], taking the |
| /// nearest pixel. |
| /// |
| /// Coordinates outside the image bounds will return `None`, however the |
| /// behavior for points within half a pixel of the image bounds may change in |
| /// the future. |
| pub fn interpolate_nearest<P: Pixel>( |
| img: &impl GenericImageView<Pixel = P>, |
| x: f32, |
| y: f32, |
| ) -> Option<P> { |
| let (w, h) = img.dimensions(); |
| if w == 0 || h == 0 { |
| return None; |
| } |
| if !(0.0..=((w - 1) as f32)).contains(&x) { |
| return None; |
| } |
| if !(0.0..=((h - 1) as f32)).contains(&y) { |
| return None; |
| } |
| |
| Some(img.get_pixel(x.round() as u32, y.round() as u32)) |
| } |
| |
| /// Linearly sample from an image using coordinates in [0, w-1] and [0, h-1]. |
| pub fn interpolate_bilinear<P: Pixel>( |
| img: &impl GenericImageView<Pixel = P>, |
| x: f32, |
| y: f32, |
| ) -> Option<P> { |
| // assumption needed for correctness of pixel creation |
| assert!(P::CHANNEL_COUNT <= 4); |
| |
| let (w, h) = img.dimensions(); |
| if w == 0 || h == 0 { |
| return None; |
| } |
| if !(0.0..=((w - 1) as f32)).contains(&x) { |
| return None; |
| } |
| if !(0.0..=((h - 1) as f32)).contains(&y) { |
| return None; |
| } |
| |
| // keep these as integers, for fewer FLOPs |
| let uf = x.floor() as u32; |
| let vf = y.floor() as u32; |
| let uc = (uf + 1).min(w - 1); |
| let vc = (vf + 1).min(h - 1); |
| |
| // clamp coords to the range of the image |
| let mut sxx = [[0.; 4]; 4]; |
| |
| // do not use Array::map, as it can be slow with high stack usage, |
| // for [[f32; 4]; 4]. |
| |
| // convert samples to f32 |
| // currently rgba is the largest one, |
| // so just store as many items as necessary, |
| // because there's not a simple way to be generic over all of them. |
| let mut compute = |u: u32, v: u32, i| { |
| let s = img.get_pixel(u, v); |
| for (j, c) in s.channels().iter().enumerate() { |
| sxx[j][i] = c.to_f32().unwrap(); |
| } |
| s |
| }; |
| |
| // hacky reuse since cannot construct a generic Pixel |
| let mut out: P = compute(uf, vf, 0); |
| compute(uf, vc, 1); |
| compute(uc, vf, 2); |
| compute(uc, vc, 3); |
| |
| // weights, the later two are independent from the first 2 for better vectorization. |
| let ufw = x - uf as f32; |
| let vfw = y - vf as f32; |
| let ucw = (uf + 1) as f32 - x; |
| let vcw = (vf + 1) as f32 - y; |
| |
| // https://en.wikipedia.org/wiki/Bilinear_interpolation#Weighted_mean |
| // the distance between pixels is 1 so there is no denominator |
| let wff = ucw * vcw; |
| let wfc = ucw * vfw; |
| let wcf = ufw * vcw; |
| let wcc = ufw * vfw; |
| // was originally assert, but is actually not a cheap computation |
| debug_assert!(f32::abs((wff + wfc + wcf + wcc) - 1.) < 1e-3); |
| |
| // hack to see if primitive is an integer or a float |
| let is_float = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap() == 1.0; |
| |
| for (i, c) in out.channels_mut().iter_mut().enumerate() { |
| let v = wff * sxx[i][0] + wfc * sxx[i][1] + wcf * sxx[i][2] + wcc * sxx[i][3]; |
| // this rounding may introduce quantization errors, |
| // Specifically what is meant is that many samples may deviate |
| // from the mean value of the originals, but it's not possible to fix that. |
| *c = <P::Subpixel as NumCast>::from(if is_float { v } else { v.round() }).unwrap_or({ |
| if v < 0.0 { |
| P::Subpixel::DEFAULT_MIN_VALUE |
| } else { |
| P::Subpixel::DEFAULT_MAX_VALUE |
| } |
| }); |
| } |
| |
| Some(out) |
| } |
| |
| // Sample the columns of the supplied image using the provided filter. |
| // The width of the image remains unchanged. |
| // ```new_height``` is the desired height of the new image |
| // ```filter``` is the filter to use for sampling. |
| // The return value is not necessarily Rgba, the underlying order of channels in ```image``` is |
| // preserved. |
| // |
| // Note: if an empty image is passed in, panics unless the image is truly empty. |
| fn vertical_sample<I, P, S>(image: &I, new_height: u32, filter: &mut Filter) -> Rgba32FImage |
| where |
| I: GenericImageView<Pixel = P>, |
| P: Pixel<Subpixel = S> + 'static, |
| S: Primitive + 'static, |
| { |
| let (width, height) = image.dimensions(); |
| |
| // This is protection against a regression in memory usage such as #2340. Since the strategy to |
| // deal with it depends on the caller it is a precondition of this function. |
| assert!( |
| // Checks the implication: (height == 0) -> (width == 0) |
| height != 0 || width == 0, |
| "Unexpected prior allocation size. This case should have been handled by the caller" |
| ); |
| |
| let mut out = ImageBuffer::new(width, new_height); |
| let mut ws = Vec::new(); |
| |
| let ratio = height as f32 / new_height as f32; |
| let sratio = if ratio < 1.0 { 1.0 } else { ratio }; |
| let src_support = filter.support * sratio; |
| |
| for outy in 0..new_height { |
| // For an explanation of this algorithm, see the comments |
| // in horizontal_sample. |
| let inputy = (outy as f32 + 0.5) * ratio; |
| |
| let left = (inputy - src_support).floor() as i64; |
| let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32; |
| |
| let right = (inputy + src_support).ceil() as i64; |
| let right = clamp( |
| right, |
| <i64 as From<_>>::from(left) + 1, |
| <i64 as From<_>>::from(height), |
| ) as u32; |
| |
| let inputy = inputy - 0.5; |
| |
| ws.clear(); |
| let mut sum = 0.0; |
| for i in left..right { |
| let w = (filter.kernel)((i as f32 - inputy) / sratio); |
| ws.push(w); |
| sum += w; |
| } |
| ws.iter_mut().for_each(|w| *w /= sum); |
| |
| for x in 0..width { |
| let mut t = (0.0, 0.0, 0.0, 0.0); |
| |
| for (i, w) in ws.iter().enumerate() { |
| let p = image.get_pixel(x, left + i as u32); |
| |
| #[allow(deprecated)] |
| let (k1, k2, k3, k4) = p.channels4(); |
| let vec: (f32, f32, f32, f32) = ( |
| NumCast::from(k1).unwrap(), |
| NumCast::from(k2).unwrap(), |
| NumCast::from(k3).unwrap(), |
| NumCast::from(k4).unwrap(), |
| ); |
| |
| t.0 += vec.0 * w; |
| t.1 += vec.1 * w; |
| t.2 += vec.2 * w; |
| t.3 += vec.3 * w; |
| } |
| |
| #[allow(deprecated)] |
| // This is not necessarily Rgba. |
| let t = Pixel::from_channels(t.0, t.1, t.2, t.3); |
| |
| out.put_pixel(x, outy, t); |
| } |
| } |
| |
| out |
| } |
| |
| /// Local struct for keeping track of pixel sums for fast thumbnail averaging |
| struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger); |
| |
| impl<S: Primitive + Enlargeable> ThumbnailSum<S> { |
| fn zeroed() -> Self { |
| ThumbnailSum( |
| S::Larger::zero(), |
| S::Larger::zero(), |
| S::Larger::zero(), |
| S::Larger::zero(), |
| ) |
| } |
| |
| fn sample_val(val: S) -> S::Larger { |
| <S::Larger as NumCast>::from(val).unwrap() |
| } |
| |
| fn add_pixel<P: Pixel<Subpixel = S>>(&mut self, pixel: P) { |
| #[allow(deprecated)] |
| let pixel = pixel.channels4(); |
| self.0 += Self::sample_val(pixel.0); |
| self.1 += Self::sample_val(pixel.1); |
| self.2 += Self::sample_val(pixel.2); |
| self.3 += Self::sample_val(pixel.3); |
| } |
| } |
| |
| /// Resize the supplied image to the specific dimensions. |
| /// |
| /// For downscaling, this method uses a fast integer algorithm where each source pixel contributes |
| /// to exactly one target pixel. May give aliasing artifacts if new size is close to old size. |
| /// |
| /// In case the current width is smaller than the new width or similar for the height, another |
| /// strategy is used instead. For each pixel in the output, a rectangular region of the input is |
| /// determined, just as previously. But when no input pixel is part of this region, the nearest |
| /// pixels are interpolated instead. |
| /// |
| /// For speed reasons, all interpolation is performed linearly over the colour values. It will not |
| /// take the pixel colour spaces into account. |
| pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>> |
| where |
| I: GenericImageView<Pixel = P>, |
| P: Pixel<Subpixel = S> + 'static, |
| S: Primitive + Enlargeable + 'static, |
| { |
| let (width, height) = image.dimensions(); |
| let mut out = ImageBuffer::new(new_width, new_height); |
| if height == 0 || width == 0 { |
| return out; |
| } |
| |
| let x_ratio = width as f32 / new_width as f32; |
| let y_ratio = height as f32 / new_height as f32; |
| |
| for outy in 0..new_height { |
| let bottomf = outy as f32 * y_ratio; |
| let topf = bottomf + y_ratio; |
| |
| let bottom = clamp(bottomf.ceil() as u32, 0, height - 1); |
| let top = clamp(topf.ceil() as u32, bottom, height); |
| |
| for outx in 0..new_width { |
| let leftf = outx as f32 * x_ratio; |
| let rightf = leftf + x_ratio; |
| |
| let left = clamp(leftf.ceil() as u32, 0, width - 1); |
| let right = clamp(rightf.ceil() as u32, left, width); |
| |
| let avg = if bottom != top && left != right { |
| thumbnail_sample_block(image, left, right, bottom, top) |
| } else if bottom != top { |
| // && left == right |
| // In the first column we have left == 0 and right > ceil(y_scale) > 0 so this |
| // assertion can never trigger. |
| debug_assert!( |
| left > 0 && right > 0, |
| "First output column must have corresponding pixels" |
| ); |
| |
| let fraction_horizontal = (leftf.fract() + rightf.fract()) / 2.; |
| thumbnail_sample_fraction_horizontal( |
| image, |
| right - 1, |
| fraction_horizontal, |
| bottom, |
| top, |
| ) |
| } else if left != right { |
| // && bottom == top |
| // In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this |
| // assertion can never trigger. |
| debug_assert!( |
| bottom > 0 && top > 0, |
| "First output row must have corresponding pixels" |
| ); |
| |
| let fraction_vertical = (topf.fract() + bottomf.fract()) / 2.; |
| thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical) |
| } else { |
| // bottom == top && left == right |
| let fraction_horizontal = (topf.fract() + bottomf.fract()) / 2.; |
| let fraction_vertical = (leftf.fract() + rightf.fract()) / 2.; |
| |
| thumbnail_sample_fraction_both( |
| image, |
| right - 1, |
| fraction_horizontal, |
| top - 1, |
| fraction_vertical, |
| ) |
| }; |
| |
| #[allow(deprecated)] |
| let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3); |
| out.put_pixel(outx, outy, pixel); |
| } |
| } |
| |
| out |
| } |
| |
| /// Get a pixel for a thumbnail where the input window encloses at least a full pixel. |
| fn thumbnail_sample_block<I, P, S>( |
| image: &I, |
| left: u32, |
| right: u32, |
| bottom: u32, |
| top: u32, |
| ) -> (S, S, S, S) |
| where |
| I: GenericImageView<Pixel = P>, |
| P: Pixel<Subpixel = S>, |
| S: Primitive + Enlargeable, |
| { |
| let mut sum = ThumbnailSum::zeroed(); |
| |
| for y in bottom..top { |
| for x in left..right { |
| let k = image.get_pixel(x, y); |
| sum.add_pixel(k); |
| } |
| } |
| |
| let n = <S::Larger as NumCast>::from((right - left) * (top - bottom)).unwrap(); |
| let round = <S::Larger as NumCast>::from(n / NumCast::from(2).unwrap()).unwrap(); |
| ( |
| S::clamp_from((sum.0 + round) / n), |
| S::clamp_from((sum.1 + round) / n), |
| S::clamp_from((sum.2 + round) / n), |
| S::clamp_from((sum.3 + round) / n), |
| ) |
| } |
| |
| /// Get a thumbnail pixel where the input window encloses at least a vertical pixel. |
| fn thumbnail_sample_fraction_horizontal<I, P, S>( |
| image: &I, |
| left: u32, |
| fraction_horizontal: f32, |
| bottom: u32, |
| top: u32, |
| ) -> (S, S, S, S) |
| where |
| I: GenericImageView<Pixel = P>, |
| P: Pixel<Subpixel = S>, |
| S: Primitive + Enlargeable, |
| { |
| let fract = fraction_horizontal; |
| |
| let mut sum_left = ThumbnailSum::zeroed(); |
| let mut sum_right = ThumbnailSum::zeroed(); |
| for x in bottom..top { |
| let k_left = image.get_pixel(left, x); |
| sum_left.add_pixel(k_left); |
| |
| let k_right = image.get_pixel(left + 1, x); |
| sum_right.add_pixel(k_right); |
| } |
| |
| // Now we approximate: left/n*(1-fract) + right/n*fract |
| let fact_right = fract / ((top - bottom) as f32); |
| let fact_left = (1. - fract) / ((top - bottom) as f32); |
| |
| let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger| { |
| <S as NumCast>::from( |
| fact_left * leftv.to_f32().unwrap() + fact_right * rightv.to_f32().unwrap(), |
| ) |
| .expect("Average sample value should fit into sample type") |
| }; |
| |
| ( |
| mix_left_and_right(sum_left.0, sum_right.0), |
| mix_left_and_right(sum_left.1, sum_right.1), |
| mix_left_and_right(sum_left.2, sum_right.2), |
| mix_left_and_right(sum_left.3, sum_right.3), |
| ) |
| } |
| |
| /// Get a thumbnail pixel where the input window encloses at least a horizontal pixel. |
| fn thumbnail_sample_fraction_vertical<I, P, S>( |
| image: &I, |
| left: u32, |
| right: u32, |
| bottom: u32, |
| fraction_vertical: f32, |
| ) -> (S, S, S, S) |
| where |
| I: GenericImageView<Pixel = P>, |
| P: Pixel<Subpixel = S>, |
| S: Primitive + Enlargeable, |
| { |
| let fract = fraction_vertical; |
| |
| let mut sum_bot = ThumbnailSum::zeroed(); |
| let mut sum_top = ThumbnailSum::zeroed(); |
| for x in left..right { |
| let k_bot = image.get_pixel(x, bottom); |
| sum_bot.add_pixel(k_bot); |
| |
| let k_top = image.get_pixel(x, bottom + 1); |
| sum_top.add_pixel(k_top); |
| } |
| |
| // Now we approximate: bot/n*fract + top/n*(1-fract) |
| let fact_top = fract / ((right - left) as f32); |
| let fact_bot = (1. - fract) / ((right - left) as f32); |
| |
| let mix_bot_and_top = |botv: S::Larger, topv: S::Larger| { |
| <S as NumCast>::from(fact_bot * botv.to_f32().unwrap() + fact_top * topv.to_f32().unwrap()) |
| .expect("Average sample value should fit into sample type") |
| }; |
| |
| ( |
| mix_bot_and_top(sum_bot.0, sum_top.0), |
| mix_bot_and_top(sum_bot.1, sum_top.1), |
| mix_bot_and_top(sum_bot.2, sum_top.2), |
| mix_bot_and_top(sum_bot.3, sum_top.3), |
| ) |
| } |
| |
| /// Get a single pixel for a thumbnail where the input window does not enclose any full pixel. |
| fn thumbnail_sample_fraction_both<I, P, S>( |
| image: &I, |
| left: u32, |
| fraction_vertical: f32, |
| bottom: u32, |
| fraction_horizontal: f32, |
| ) -> (S, S, S, S) |
| where |
| I: GenericImageView<Pixel = P>, |
| P: Pixel<Subpixel = S>, |
| S: Primitive + Enlargeable, |
| { |
| #[allow(deprecated)] |
| let k_bl = image.get_pixel(left, bottom).channels4(); |
| #[allow(deprecated)] |
| let k_tl = image.get_pixel(left, bottom + 1).channels4(); |
| #[allow(deprecated)] |
| let k_br = image.get_pixel(left + 1, bottom).channels4(); |
| #[allow(deprecated)] |
| let k_tr = image.get_pixel(left + 1, bottom + 1).channels4(); |
| |
| let frac_v = fraction_vertical; |
| let frac_h = fraction_horizontal; |
| |
| let fact_tr = frac_v * frac_h; |
| let fact_tl = frac_v * (1. - frac_h); |
| let fact_br = (1. - frac_v) * frac_h; |
| let fact_bl = (1. - frac_v) * (1. - frac_h); |
| |
| let mix = |br: S, tr: S, bl: S, tl: S| { |
| <S as NumCast>::from( |
| fact_br * br.to_f32().unwrap() |
| + fact_tr * tr.to_f32().unwrap() |
| + fact_bl * bl.to_f32().unwrap() |
| + fact_tl * tl.to_f32().unwrap(), |
| ) |
| .expect("Average sample value should fit into sample type") |
| }; |
| |
| ( |
| mix(k_br.0, k_tr.0, k_bl.0, k_tl.0), |
| mix(k_br.1, k_tr.1, k_bl.1, k_tl.1), |
| mix(k_br.2, k_tr.2, k_bl.2, k_tl.2), |
| mix(k_br.3, k_tr.3, k_bl.3, k_tl.3), |
| ) |
| } |
| |
| /// Perform a 3x3 box filter on the supplied image. |
| /// ```kernel``` is an array of the filter weights of length 9. |
| pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>> |
| where |
| I: GenericImageView<Pixel = P>, |
| P: Pixel<Subpixel = S> + 'static, |
| S: Primitive + 'static, |
| { |
| // The kernel's input positions relative to the current pixel. |
| let taps: &[(isize, isize)] = &[ |
| (-1, -1), |
| (0, -1), |
| (1, -1), |
| (-1, 0), |
| (0, 0), |
| (1, 0), |
| (-1, 1), |
| (0, 1), |
| (1, 1), |
| ]; |
| |
| let (width, height) = image.dimensions(); |
| |
| let mut out = ImageBuffer::new(width, height); |
| |
| let max = S::DEFAULT_MAX_VALUE; |
| let max: f32 = NumCast::from(max).unwrap(); |
| |
| #[allow(clippy::redundant_guards)] |
| let sum = match kernel.iter().fold(0.0, |s, &item| s + item) { |
| x if x == 0.0 => 1.0, |
| sum => sum, |
| }; |
| let sum = (sum, sum, sum, sum); |
| |
| for y in 1..height - 1 { |
| for x in 1..width - 1 { |
| let mut t = (0.0, 0.0, 0.0, 0.0); |
| |
| // TODO: There is no need to recalculate the kernel for each pixel. |
| // Only a subtract and addition is needed for pixels after the first |
| // in each row. |
| for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) { |
| let k = (k, k, k, k); |
| let x0 = x as isize + a; |
| let y0 = y as isize + b; |
| |
| let p = image.get_pixel(x0 as u32, y0 as u32); |
| |
| #[allow(deprecated)] |
| let (k1, k2, k3, k4) = p.channels4(); |
| |
| let vec: (f32, f32, f32, f32) = ( |
| NumCast::from(k1).unwrap(), |
| NumCast::from(k2).unwrap(), |
| NumCast::from(k3).unwrap(), |
| NumCast::from(k4).unwrap(), |
| ); |
| |
| t.0 += vec.0 * k.0; |
| t.1 += vec.1 * k.1; |
| t.2 += vec.2 * k.2; |
| t.3 += vec.3 * k.3; |
| } |
| |
| let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3); |
| |
| #[allow(deprecated)] |
| let t = Pixel::from_channels( |
| NumCast::from(clamp(t1, 0.0, max)).unwrap(), |
| NumCast::from(clamp(t2, 0.0, max)).unwrap(), |
| NumCast::from(clamp(t3, 0.0, max)).unwrap(), |
| NumCast::from(clamp(t4, 0.0, max)).unwrap(), |
| ); |
| |
| out.put_pixel(x, y, t); |
| } |
| } |
| |
| out |
| } |
| |
| /// Resize the supplied image to the specified dimensions. |
| /// ```nwidth``` and ```nheight``` are the new dimensions. |
| /// ```filter``` is the sampling filter to use. |
| /// This method assumes alpha pre-multiplication for images that contain non-constant alpha. |
| pub fn resize<I: GenericImageView>( |
| image: &I, |
| nwidth: u32, |
| nheight: u32, |
| filter: FilterType, |
| ) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>> |
| where |
| I::Pixel: 'static, |
| <I::Pixel as Pixel>::Subpixel: 'static, |
| { |
| // Check if there is nothing to sample from. |
| let is_empty = { |
| let (width, height) = image.dimensions(); |
| width == 0 || height == 0 |
| }; |
| |
| if is_empty { |
| return ImageBuffer::new(nwidth, nheight); |
| } |
| |
| // check if the new dimensions are the same as the old. if they are, make a copy instead of resampling |
| if (nwidth, nheight) == image.dimensions() { |
| let mut tmp = ImageBuffer::new(image.width(), image.height()); |
| tmp.copy_from(image, 0, 0).unwrap(); |
| return tmp; |
| } |
| |
| let mut method = match filter { |
| FilterType::Nearest => Filter { |
| kernel: Box::new(box_kernel), |
| support: 0.0, |
| }, |
| FilterType::Triangle => Filter { |
| kernel: Box::new(triangle_kernel), |
| support: 1.0, |
| }, |
| FilterType::CatmullRom => Filter { |
| kernel: Box::new(catmullrom_kernel), |
| support: 2.0, |
| }, |
| FilterType::Gaussian => Filter { |
| kernel: Box::new(gaussian_kernel), |
| support: 3.0, |
| }, |
| FilterType::Lanczos3 => Filter { |
| kernel: Box::new(lanczos3_kernel), |
| support: 3.0, |
| }, |
| }; |
| |
| // Note: tmp is not necessarily actually Rgba |
| let tmp: Rgba32FImage = vertical_sample(image, nheight, &mut method); |
| horizontal_sample(&tmp, nwidth, &mut method) |
| } |
| |
| /// Performs a Gaussian blur on the supplied image. |
| /// ```sigma``` is a measure of how much to blur by. |
| /// Use [`crate::imageops::fast_blur()`] for a faster but less |
| /// accurate version. |
| /// This method assumes alpha pre-multiplication for images that contain non-constant alpha. |
| pub fn blur<I: GenericImageView>( |
| image: &I, |
| sigma: f32, |
| ) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>> |
| where |
| I::Pixel: 'static, |
| { |
| let sigma = if sigma <= 0.0 { 1.0 } else { sigma }; |
| |
| let mut method = Filter { |
| kernel: Box::new(|x| gaussian(x, sigma)), |
| support: 2.0 * sigma, |
| }; |
| |
| let (width, height) = image.dimensions(); |
| let is_empty = width == 0 || height == 0; |
| |
| if is_empty { |
| return ImageBuffer::new(width, height); |
| } |
| |
| // Keep width and height the same for horizontal and |
| // vertical sampling. |
| // Note: tmp is not necessarily actually Rgba |
| let tmp: Rgba32FImage = vertical_sample(image, height, &mut method); |
| horizontal_sample(&tmp, width, &mut method) |
| } |
| |
| /// Performs an unsharpen mask on the supplied image. |
| /// ```sigma``` is the amount to blur the image by. |
| /// ```threshold``` is the threshold for minimal brightness change that will be sharpened. |
| /// |
| /// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking> |
| pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>> |
| where |
| I: GenericImageView<Pixel = P>, |
| P: Pixel<Subpixel = S> + 'static, |
| S: Primitive + 'static, |
| { |
| let mut tmp = blur(image, sigma); |
| |
| let max = S::DEFAULT_MAX_VALUE; |
| let max: i32 = NumCast::from(max).unwrap(); |
| let (width, height) = image.dimensions(); |
| |
| for y in 0..height { |
| for x in 0..width { |
| let a = image.get_pixel(x, y); |
| let b = tmp.get_pixel_mut(x, y); |
| |
| let p = a.map2(b, |c, d| { |
| let ic: i32 = NumCast::from(c).unwrap(); |
| let id: i32 = NumCast::from(d).unwrap(); |
| |
| let diff = ic - id; |
| |
| if diff.abs() > threshold { |
| let e = clamp(ic + diff, 0, max); // FIXME what does this do for f32? clamp 0-1 integers?? |
| |
| NumCast::from(e).unwrap() |
| } else { |
| c |
| } |
| }); |
| |
| *b = p; |
| } |
| } |
| |
| tmp |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::{resize, sample_bilinear, sample_nearest, FilterType}; |
| use crate::{GenericImageView, ImageBuffer, RgbImage}; |
| #[cfg(feature = "benchmarks")] |
| use test; |
| |
| #[bench] |
| #[cfg(all(feature = "benchmarks", feature = "png"))] |
| fn bench_resize(b: &mut test::Bencher) { |
| use std::path::Path; |
| let img = crate::open(Path::new("./examples/fractal.png")).unwrap(); |
| b.iter(|| { |
| test::black_box(resize(&img, 200, 200, FilterType::Nearest)); |
| }); |
| b.bytes = 800 * 800 * 3 + 200 * 200 * 3; |
| } |
| |
| #[test] |
| #[cfg(feature = "png")] |
| fn test_resize_same_size() { |
| use std::path::Path; |
| let img = crate::open(Path::new("./examples/fractal.png")).unwrap(); |
| let resize = img.resize(img.width(), img.height(), FilterType::Triangle); |
| assert!(img.pixels().eq(resize.pixels())); |
| } |
| |
| #[test] |
| #[cfg(feature = "png")] |
| fn test_sample_bilinear() { |
| use std::path::Path; |
| let img = crate::open(Path::new("./examples/fractal.png")).unwrap(); |
| assert!(sample_bilinear(&img, 0., 0.).is_some()); |
| assert!(sample_bilinear(&img, 1., 0.).is_some()); |
| assert!(sample_bilinear(&img, 0., 1.).is_some()); |
| assert!(sample_bilinear(&img, 1., 1.).is_some()); |
| assert!(sample_bilinear(&img, 0.5, 0.5).is_some()); |
| |
| assert!(sample_bilinear(&img, 1.2, 0.5).is_none()); |
| assert!(sample_bilinear(&img, 0.5, 1.2).is_none()); |
| assert!(sample_bilinear(&img, 1.2, 1.2).is_none()); |
| |
| assert!(sample_bilinear(&img, -0.1, 0.2).is_none()); |
| assert!(sample_bilinear(&img, 0.2, -0.1).is_none()); |
| assert!(sample_bilinear(&img, -0.1, -0.1).is_none()); |
| } |
| #[test] |
| #[cfg(feature = "png")] |
| fn test_sample_nearest() { |
| use std::path::Path; |
| let img = crate::open(Path::new("./examples/fractal.png")).unwrap(); |
| assert!(sample_nearest(&img, 0., 0.).is_some()); |
| assert!(sample_nearest(&img, 1., 0.).is_some()); |
| assert!(sample_nearest(&img, 0., 1.).is_some()); |
| assert!(sample_nearest(&img, 1., 1.).is_some()); |
| assert!(sample_nearest(&img, 0.5, 0.5).is_some()); |
| |
| assert!(sample_nearest(&img, 1.2, 0.5).is_none()); |
| assert!(sample_nearest(&img, 0.5, 1.2).is_none()); |
| assert!(sample_nearest(&img, 1.2, 1.2).is_none()); |
| |
| assert!(sample_nearest(&img, -0.1, 0.2).is_none()); |
| assert!(sample_nearest(&img, 0.2, -0.1).is_none()); |
| assert!(sample_nearest(&img, -0.1, -0.1).is_none()); |
| } |
| #[test] |
| fn test_sample_bilinear_correctness() { |
| use crate::Rgba; |
| let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) { |
| (0, 0) => Rgba([255, 0, 0, 0]), |
| (0, 1) => Rgba([0, 255, 0, 0]), |
| (1, 0) => Rgba([0, 0, 255, 0]), |
| (1, 1) => Rgba([0, 0, 0, 255]), |
| _ => panic!(), |
| }); |
| assert_eq!(sample_bilinear(&img, 0.5, 0.5), Some(Rgba([64; 4]))); |
| assert_eq!(sample_bilinear(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0]))); |
| assert_eq!(sample_bilinear(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0]))); |
| assert_eq!(sample_bilinear(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0]))); |
| assert_eq!(sample_bilinear(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255]))); |
| |
| assert_eq!( |
| sample_bilinear(&img, 0.5, 0.0), |
| Some(Rgba([128, 0, 128, 0])) |
| ); |
| assert_eq!( |
| sample_bilinear(&img, 0.0, 0.5), |
| Some(Rgba([128, 128, 0, 0])) |
| ); |
| assert_eq!( |
| sample_bilinear(&img, 0.5, 1.0), |
| Some(Rgba([0, 128, 0, 128])) |
| ); |
| assert_eq!( |
| sample_bilinear(&img, 1.0, 0.5), |
| Some(Rgba([0, 0, 128, 128])) |
| ); |
| } |
| #[bench] |
| #[cfg(feature = "benchmarks")] |
| fn bench_sample_bilinear(b: &mut test::Bencher) { |
| use crate::Rgba; |
| let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) { |
| (0, 0) => Rgba([255, 0, 0, 0]), |
| (0, 1) => Rgba([0, 255, 0, 0]), |
| (1, 0) => Rgba([0, 0, 255, 0]), |
| (1, 1) => Rgba([0, 0, 0, 255]), |
| _ => panic!(), |
| }); |
| b.iter(|| { |
| sample_bilinear(&img, test::black_box(0.5), test::black_box(0.5)); |
| }); |
| } |
| #[test] |
| fn test_sample_nearest_correctness() { |
| use crate::Rgba; |
| let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) { |
| (0, 0) => Rgba([255, 0, 0, 0]), |
| (0, 1) => Rgba([0, 255, 0, 0]), |
| (1, 0) => Rgba([0, 0, 255, 0]), |
| (1, 1) => Rgba([0, 0, 0, 255]), |
| _ => panic!(), |
| }); |
| |
| assert_eq!(sample_nearest(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0]))); |
| assert_eq!(sample_nearest(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0]))); |
| assert_eq!(sample_nearest(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0]))); |
| assert_eq!(sample_nearest(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255]))); |
| |
| assert_eq!(sample_nearest(&img, 0.5, 0.5), Some(Rgba([0, 0, 0, 255]))); |
| assert_eq!(sample_nearest(&img, 0.5, 0.0), Some(Rgba([0, 0, 255, 0]))); |
| assert_eq!(sample_nearest(&img, 0.0, 0.5), Some(Rgba([0, 255, 0, 0]))); |
| assert_eq!(sample_nearest(&img, 0.5, 1.0), Some(Rgba([0, 0, 0, 255]))); |
| assert_eq!(sample_nearest(&img, 1.0, 0.5), Some(Rgba([0, 0, 0, 255]))); |
| } |
| |
| #[bench] |
| #[cfg(all(feature = "benchmarks", feature = "tiff"))] |
| fn bench_resize_same_size(b: &mut test::Bencher) { |
| let path = concat!( |
| env!("CARGO_MANIFEST_DIR"), |
| "/tests/images/tiff/testsuite/mandrill.tiff" |
| ); |
| let image = crate::open(path).unwrap(); |
| b.iter(|| { |
| test::black_box(image.resize(image.width(), image.height(), FilterType::CatmullRom)); |
| }); |
| b.bytes = (image.width() * image.height() * 3) as u64; |
| } |
| |
| #[test] |
| fn test_issue_186() { |
| let img: RgbImage = ImageBuffer::new(100, 100); |
| let _ = resize(&img, 50, 50, FilterType::Lanczos3); |
| } |
| |
| #[bench] |
| #[cfg(all(feature = "benchmarks", feature = "tiff"))] |
| fn bench_thumbnail(b: &mut test::Bencher) { |
| let path = concat!( |
| env!("CARGO_MANIFEST_DIR"), |
| "/tests/images/tiff/testsuite/mandrill.tiff" |
| ); |
| let image = crate::open(path).unwrap(); |
| b.iter(|| { |
| test::black_box(image.thumbnail(256, 256)); |
| }); |
| b.bytes = 512 * 512 * 4 + 256 * 256 * 4; |
| } |
| |
| #[bench] |
| #[cfg(all(feature = "benchmarks", feature = "tiff"))] |
| fn bench_thumbnail_upsize(b: &mut test::Bencher) { |
| let path = concat!( |
| env!("CARGO_MANIFEST_DIR"), |
| "/tests/images/tiff/testsuite/mandrill.tiff" |
| ); |
| let image = crate::open(path).unwrap().thumbnail(256, 256); |
| b.iter(|| { |
| test::black_box(image.thumbnail(512, 512)); |
| }); |
| b.bytes = 512 * 512 * 4 + 256 * 256 * 4; |
| } |
| |
| #[bench] |
| #[cfg(all(feature = "benchmarks", feature = "tiff"))] |
| fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) { |
| let path = concat!( |
| env!("CARGO_MANIFEST_DIR"), |
| "/tests/images/tiff/testsuite/mandrill.tiff" |
| ); |
| let image = crate::open(path).unwrap().thumbnail(193, 193); |
| b.iter(|| { |
| test::black_box(image.thumbnail(256, 256)); |
| }); |
| b.bytes = 193 * 193 * 4 + 256 * 256 * 4; |
| } |
| |
| #[test] |
| #[cfg(feature = "png")] |
| fn resize_transparent_image() { |
| use super::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle}; |
| use crate::imageops::crop_imm; |
| use crate::RgbaImage; |
| |
| fn assert_resize(image: &RgbaImage, filter: FilterType) { |
| let resized = resize(image, 16, 16, filter); |
| let cropped = crop_imm(&resized, 5, 5, 6, 6).to_image(); |
| for pixel in cropped.pixels() { |
| let alpha = pixel.0[3]; |
| assert!( |
| alpha != 254 && alpha != 253, |
| "alpha value: {}, {:?}", |
| alpha, |
| filter |
| ); |
| } |
| } |
| |
| let path = concat!( |
| env!("CARGO_MANIFEST_DIR"), |
| "/tests/images/png/transparency/tp1n3p08.png" |
| ); |
| let img = crate::open(path).unwrap(); |
| let rgba8 = img.as_rgba8().unwrap(); |
| let filters = &[Nearest, Triangle, CatmullRom, Gaussian, Lanczos3]; |
| for filter in filters { |
| assert_resize(rgba8, *filter); |
| } |
| } |
| |
| #[test] |
| fn bug_1600() { |
| let image = crate::RgbaImage::from_raw(629, 627, vec![255; 629 * 627 * 4]).unwrap(); |
| let result = resize(&image, 22, 22, FilterType::Lanczos3); |
| assert!(result.into_raw().into_iter().any(|c| c != 0)); |
| } |
| |
| #[test] |
| fn issue_2340() { |
| let empty = crate::GrayImage::from_raw(1 << 31, 0, vec![]).unwrap(); |
| // Really we're checking that no overflow / outsized allocation happens here. |
| let result = resize(&empty, 1, 1, FilterType::Lanczos3); |
| assert!(result.into_raw().into_iter().all(|c| c == 0)); |
| // With the previous strategy before the regression this would allocate 1TB of memory for a |
| // temporary during the sampling evaluation. |
| let result = resize(&empty, 256, 256, FilterType::Lanczos3); |
| assert!(result.into_raw().into_iter().all(|c| c == 0)); |
| } |
| |
| #[test] |
| fn issue_2340_refl() { |
| // Tests the swapped coordinate version of `issue_2340`. |
| let empty = crate::GrayImage::from_raw(0, 1 << 31, vec![]).unwrap(); |
| let result = resize(&empty, 1, 1, FilterType::Lanczos3); |
| assert!(result.into_raw().into_iter().all(|c| c == 0)); |
| let result = resize(&empty, 256, 256, FilterType::Lanczos3); |
| assert!(result.into_raw().into_iter().all(|c| c == 0)); |
| } |
| } |