| // This file is part of ICU4X. For terms of use, please see the file |
| // called LICENSE at the top level of the ICU4X source tree |
| // (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ). |
| |
| use super::VarZeroVecFormatError; |
| use crate::ule::*; |
| use alloc::boxed::Box; |
| use alloc::format; |
| use alloc::string::String; |
| use alloc::vec::Vec; |
| use core::cmp::Ordering; |
| use core::convert::TryFrom; |
| use core::marker::PhantomData; |
| use core::mem; |
| use core::ops::Range; |
| |
| /// This trait allows switching between different possible internal |
| /// representations of VarZeroVec. |
| /// |
| /// Currently this crate supports three formats: [`Index8`], [`Index16`] and [`Index32`], |
| /// with [`Index16`] being the default for all [`VarZeroVec`](super::VarZeroVec) |
| /// types unless explicitly specified otherwise. |
| /// |
| /// Do not implement this trait, its internals may be changed in the future, |
| /// and all of its associated items are hidden from the docs. |
| pub trait VarZeroVecFormat: 'static + Sized { |
| /// The type to use for the indexing array |
| /// |
| /// Safety: must be a ULE for which all byte sequences are allowed |
| #[doc(hidden)] |
| type Index: IntegerULE; |
| /// The type to use for the length segment |
| /// |
| /// Safety: must be a ULE for which all byte sequences are allowed |
| #[doc(hidden)] |
| type Len: IntegerULE; |
| } |
| |
| /// This trait represents various ULE types that can be used to represent an integer |
| /// |
| /// Do not implement this trait, its internals may be changed in the future, |
| /// and all of its associated items are hidden from the docs. |
| #[allow(clippy::missing_safety_doc)] // no safety section for you, don't implement this trait period |
| #[doc(hidden)] |
| pub unsafe trait IntegerULE: ULE { |
| /// The error to show when unable to construct a vec |
| #[doc(hidden)] |
| const TOO_LARGE_ERROR: &'static str; |
| |
| /// Safety: must be sizeof(self) |
| #[doc(hidden)] |
| const SIZE: usize; |
| |
| /// Safety: must be maximum integral value represented here |
| #[doc(hidden)] |
| const MAX_VALUE: u32; |
| |
| /// Safety: Must roundtrip with from_usize and represent the correct |
| /// integral value |
| #[doc(hidden)] |
| fn iule_to_usize(self) -> usize; |
| |
| #[doc(hidden)] |
| fn iule_from_usize(x: usize) -> Option<Self>; |
| |
| /// Safety: Should always convert a buffer into an array of Self with the correct length |
| #[doc(hidden)] |
| fn iule_from_bytes_unchecked_mut(bytes: &mut [u8]) -> &mut [Self]; |
| } |
| |
| /// This is a [`VarZeroVecFormat`] that stores u8s in the index array, and a u8 for a length. |
| /// |
| /// Will have a smaller data size, but it's *extremely* likely for larger arrays |
| /// to be unrepresentable (and error on construction). Should probably be used |
| /// for known-small arrays, where all but the last field are known-small. |
| #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)] |
| #[allow(clippy::exhaustive_structs)] // marker |
| pub struct Index8; |
| |
| /// This is a [`VarZeroVecFormat`] that stores u16s in the index array, and a u16 for a length. |
| /// |
| /// Will have a smaller data size, but it's more likely for larger arrays |
| /// to be unrepresentable (and error on construction) |
| /// |
| /// This is the default index size used by all [`VarZeroVec`](super::VarZeroVec) types. |
| #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)] |
| #[allow(clippy::exhaustive_structs)] // marker |
| pub struct Index16; |
| |
| /// This is a [`VarZeroVecFormat`] that stores u32s in the index array, and a u32 for a length. |
| /// Will have a larger data size, but will support large arrays without |
| /// problems. |
| #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)] |
| #[allow(clippy::exhaustive_structs)] // marker |
| pub struct Index32; |
| |
| impl VarZeroVecFormat for Index8 { |
| type Index = u8; |
| type Len = u8; |
| } |
| |
| impl VarZeroVecFormat for Index16 { |
| type Index = RawBytesULE<2>; |
| type Len = RawBytesULE<2>; |
| } |
| |
| impl VarZeroVecFormat for Index32 { |
| type Index = RawBytesULE<4>; |
| type Len = RawBytesULE<4>; |
| } |
| |
| unsafe impl IntegerULE for u8 { |
| const TOO_LARGE_ERROR: &'static str = "Attempted to build VarZeroVec out of elements that \ |
| cumulatively are larger than a u8 in size"; |
| const SIZE: usize = mem::size_of::<Self>(); |
| const MAX_VALUE: u32 = u8::MAX as u32; |
| #[inline] |
| fn iule_to_usize(self) -> usize { |
| self as usize |
| } |
| #[inline] |
| fn iule_from_usize(u: usize) -> Option<Self> { |
| u8::try_from(u).ok() |
| } |
| #[inline] |
| fn iule_from_bytes_unchecked_mut(bytes: &mut [u8]) -> &mut [Self] { |
| bytes |
| } |
| } |
| |
| unsafe impl IntegerULE for RawBytesULE<2> { |
| const TOO_LARGE_ERROR: &'static str = "Attempted to build VarZeroVec out of elements that \ |
| cumulatively are larger than a u16 in size"; |
| const SIZE: usize = mem::size_of::<Self>(); |
| const MAX_VALUE: u32 = u16::MAX as u32; |
| #[inline] |
| fn iule_to_usize(self) -> usize { |
| self.as_unsigned_int() as usize |
| } |
| #[inline] |
| fn iule_from_usize(u: usize) -> Option<Self> { |
| u16::try_from(u).ok().map(u16::to_unaligned) |
| } |
| #[inline] |
| fn iule_from_bytes_unchecked_mut(bytes: &mut [u8]) -> &mut [Self] { |
| Self::from_bytes_unchecked_mut(bytes) |
| } |
| } |
| |
| unsafe impl IntegerULE for RawBytesULE<4> { |
| const TOO_LARGE_ERROR: &'static str = "Attempted to build VarZeroVec out of elements that \ |
| cumulatively are larger than a u32 in size"; |
| const SIZE: usize = mem::size_of::<Self>(); |
| const MAX_VALUE: u32 = u32::MAX; |
| #[inline] |
| fn iule_to_usize(self) -> usize { |
| self.as_unsigned_int() as usize |
| } |
| #[inline] |
| fn iule_from_usize(u: usize) -> Option<Self> { |
| u32::try_from(u).ok().map(u32::to_unaligned) |
| } |
| #[inline] |
| fn iule_from_bytes_unchecked_mut(bytes: &mut [u8]) -> &mut [Self] { |
| Self::from_bytes_unchecked_mut(bytes) |
| } |
| } |
| |
| /// A more parsed version of `VarZeroSlice`. This type is where most of the VarZeroVec |
| /// internal representation code lies. |
| /// |
| /// This is *basically* an `&'a [u8]` to a zero copy buffer, but split out into |
| /// the buffer components. Logically this is capable of behaving as |
| /// a `&'a [T::VarULE]`, but since `T::VarULE` is unsized that type does not actually |
| /// exist. |
| /// |
| /// See [`VarZeroVecComponents::parse_bytes()`] for information on the internal invariants involved |
| #[derive(Debug)] |
| pub struct VarZeroVecComponents<'a, T: ?Sized, F> { |
| /// The number of elements |
| len: u32, |
| /// The list of indices into the `things` slice |
| /// Since the first element is always at things[0], the first element of the indices array is for the *second* element |
| indices: &'a [u8], |
| /// The contiguous list of `T::VarULE`s |
| things: &'a [u8], |
| marker: PhantomData<(&'a T, F)>, |
| } |
| |
| // #[derive()] won't work here since we do not want it to be |
| // bound on T: Copy |
| impl<'a, T: ?Sized, F> Copy for VarZeroVecComponents<'a, T, F> {} |
| impl<'a, T: ?Sized, F> Clone for VarZeroVecComponents<'a, T, F> { |
| fn clone(&self) -> Self { |
| *self |
| } |
| } |
| |
| impl<'a, T: VarULE + ?Sized, F> Default for VarZeroVecComponents<'a, T, F> { |
| #[inline] |
| fn default() -> Self { |
| Self::new() |
| } |
| } |
| |
| impl<'a, T: VarULE + ?Sized, F> VarZeroVecComponents<'a, T, F> { |
| #[inline] |
| pub fn new() -> Self { |
| Self { |
| len: 0, |
| indices: &[], |
| things: &[], |
| marker: PhantomData, |
| } |
| } |
| } |
| impl<'a, T: VarULE + ?Sized, F: VarZeroVecFormat> VarZeroVecComponents<'a, T, F> { |
| /// Construct a new VarZeroVecComponents, checking invariants about the overall buffer size: |
| /// |
| /// - There must be either zero or at least four bytes (if four, this is the "length" parsed as a usize) |
| /// - There must be at least `4*(length - 1) + 4` bytes total, to form the array `indices` of indices |
| /// - `0..indices[0]` must index into a valid section of |
| /// `things` (the data after `indices`), such that it parses to a `T::VarULE` |
| /// - `indices[i - 1]..indices[i]` must index into a valid section of |
| /// `things` (the data after `indices`), such that it parses to a `T::VarULE` |
| /// - `indices[len - 2]..things.len()` must index into a valid section of |
| /// `things`, such that it parses to a `T::VarULE` |
| #[inline] |
| pub fn parse_bytes(slice: &'a [u8]) -> Result<Self, VarZeroVecFormatError> { |
| // The empty VZV is special-cased to the empty slice |
| if slice.is_empty() { |
| return Ok(VarZeroVecComponents { |
| len: 0, |
| indices: &[], |
| things: &[], |
| marker: PhantomData, |
| }); |
| } |
| let len_bytes = slice |
| .get(0..F::Len::SIZE) |
| .ok_or(VarZeroVecFormatError::Metadata)?; |
| let len_ule = |
| F::Len::parse_bytes_to_slice(len_bytes).map_err(|_| VarZeroVecFormatError::Metadata)?; |
| |
| let len = len_ule |
| .first() |
| .ok_or(VarZeroVecFormatError::Metadata)? |
| .iule_to_usize(); |
| |
| let rest = slice |
| .get(F::Len::SIZE..) |
| .ok_or(VarZeroVecFormatError::Metadata)?; |
| let len_u32 = u32::try_from(len).map_err(|_| VarZeroVecFormatError::Metadata); |
| // We pass down the rest of the invariants |
| Self::parse_bytes_with_length(len_u32?, rest) |
| } |
| |
| /// Construct a new VarZeroVecComponents, checking invariants about the overall buffer size: |
| /// |
| /// - There must be at least `4*len` bytes total, to form the array `indices` of indices. |
| /// - `indices[i]..indices[i+1]` must index into a valid section of |
| /// `things` (the data after `indices`), such that it parses to a `T::VarULE` |
| /// - `indices[len - 1]..things.len()` must index into a valid section of |
| /// `things`, such that it parses to a `T::VarULE` |
| #[inline] |
| pub fn parse_bytes_with_length( |
| len: u32, |
| slice: &'a [u8], |
| ) -> Result<Self, VarZeroVecFormatError> { |
| let len_minus_one = len.checked_sub(1); |
| // The empty VZV is special-cased to the empty slice |
| let Some(len_minus_one) = len_minus_one else { |
| return Ok(VarZeroVecComponents { |
| len: 0, |
| indices: &[], |
| things: &[], |
| marker: PhantomData, |
| }); |
| }; |
| // The indices array is one element shorter since the first index is always 0, |
| // so we use len_minus_one |
| let indices_bytes = slice |
| .get(..F::Index::SIZE * (len_minus_one as usize)) |
| .ok_or(VarZeroVecFormatError::Metadata)?; |
| let things = slice |
| .get(F::Index::SIZE * (len_minus_one as usize)..) |
| .ok_or(VarZeroVecFormatError::Metadata)?; |
| |
| let borrowed = VarZeroVecComponents { |
| len, |
| indices: indices_bytes, |
| things, |
| marker: PhantomData, |
| }; |
| |
| borrowed.check_indices_and_things()?; |
| |
| Ok(borrowed) |
| } |
| |
| /// Construct a [`VarZeroVecComponents`] from a byte slice that has previously |
| /// successfully returned a [`VarZeroVecComponents`] when passed to |
| /// [`VarZeroVecComponents::parse_bytes()`]. Will return the same |
| /// object as one would get from calling [`VarZeroVecComponents::parse_bytes()`]. |
| /// |
| /// # Safety |
| /// The bytes must have previously successfully run through |
| /// [`VarZeroVecComponents::parse_bytes()`] |
| pub unsafe fn from_bytes_unchecked(slice: &'a [u8]) -> Self { |
| // The empty VZV is special-cased to the empty slice |
| if slice.is_empty() { |
| return VarZeroVecComponents { |
| len: 0, |
| indices: &[], |
| things: &[], |
| marker: PhantomData, |
| }; |
| } |
| // MSRV Rust 1.79: Use split_at_unchecked |
| let len_bytes = slice.get_unchecked(0..F::Len::SIZE); |
| // Safety: F::Len allows all byte sequences |
| let len_ule = F::Len::slice_from_bytes_unchecked(len_bytes); |
| |
| let len = len_ule.get_unchecked(0).iule_to_usize(); |
| let len_u32 = len as u32; |
| |
| // Safety: This method requires the bytes to have passed through `parse_bytes()` |
| // whereas we're calling something that asks for `parse_bytes_with_length()`. |
| // The two methods perform similar validation, with parse_bytes() validating an additional |
| // 4-byte `length` header. |
| Self::from_bytes_unchecked_with_length(len_u32, slice.get_unchecked(F::Len::SIZE..)) |
| } |
| |
| /// Construct a [`VarZeroVecComponents`] from a byte slice that has previously |
| /// successfully returned a [`VarZeroVecComponents`] when passed to |
| /// [`VarZeroVecComponents::parse_bytes()`]. Will return the same |
| /// object as one would get from calling [`VarZeroVecComponents::parse_bytes()`]. |
| /// |
| /// # Safety |
| /// The len,bytes must have previously successfully run through |
| /// [`VarZeroVecComponents::parse_bytes_with_length()`] |
| pub unsafe fn from_bytes_unchecked_with_length(len: u32, slice: &'a [u8]) -> Self { |
| let len_minus_one = len.checked_sub(1); |
| // The empty VZV is special-cased to the empty slice |
| let Some(len_minus_one) = len_minus_one else { |
| return VarZeroVecComponents { |
| len: 0, |
| indices: &[], |
| things: &[], |
| marker: PhantomData, |
| }; |
| }; |
| // The indices array is one element shorter since the first index is always 0, |
| // so we use len_minus_one |
| let indices_bytes = slice.get_unchecked(..F::Index::SIZE * (len_minus_one as usize)); |
| let things = slice.get_unchecked(F::Index::SIZE * (len_minus_one as usize)..); |
| |
| VarZeroVecComponents { |
| len, |
| indices: indices_bytes, |
| things, |
| marker: PhantomData, |
| } |
| } |
| |
| /// Get the number of elements in this vector |
| #[inline] |
| pub fn len(self) -> usize { |
| self.len as usize |
| } |
| |
| /// Returns `true` if the vector contains no elements. |
| #[inline] |
| pub fn is_empty(self) -> bool { |
| self.len == 0 |
| } |
| |
| /// Get the idx'th element out of this slice. Returns `None` if out of bounds. |
| #[inline] |
| pub fn get(self, idx: usize) -> Option<&'a T> { |
| if idx >= self.len() { |
| return None; |
| } |
| Some(unsafe { self.get_unchecked(idx) }) |
| } |
| |
| /// Get the idx'th element out of this slice. Does not bounds check. |
| /// |
| /// Safety: |
| /// - `idx` must be in bounds (`idx < self.len()`) |
| #[inline] |
| pub(crate) unsafe fn get_unchecked(self, idx: usize) -> &'a T { |
| let range = self.get_things_range(idx); |
| let things_slice = self.things.get_unchecked(range); |
| T::from_bytes_unchecked(things_slice) |
| } |
| |
| /// Get the range in `things` for the element at `idx`. Does not bounds check. |
| /// |
| /// Safety: |
| /// - `idx` must be in bounds (`idx < self.len()`) |
| #[inline] |
| pub(crate) unsafe fn get_things_range(self, idx: usize) -> Range<usize> { |
| let start = if let Some(idx_minus_one) = idx.checked_sub(1) { |
| self.indices_slice() |
| .get_unchecked(idx_minus_one) |
| .iule_to_usize() |
| } else { |
| 0 |
| }; |
| let end = if idx + 1 == self.len() { |
| self.things.len() |
| } else { |
| self.indices_slice().get_unchecked(idx).iule_to_usize() |
| }; |
| debug_assert!(start <= end); |
| start..end |
| } |
| |
| /// Get the size, in bytes, of the indices array |
| pub(crate) unsafe fn get_indices_size(self) -> usize { |
| self.indices.len() |
| } |
| |
| /// Check the internal invariants of VarZeroVecComponents: |
| /// |
| /// - `indices[i]..indices[i+1]` must index into a valid section of |
| /// `things`, such that it parses to a `T::VarULE` |
| /// - `indices[len - 1]..things.len()` must index into a valid section of |
| /// `things`, such that it parses to a `T::VarULE` |
| /// - `indices` is monotonically increasing |
| /// |
| /// This method is NOT allowed to call any other methods on VarZeroVecComponents since all other methods |
| /// assume that the slice has been passed through check_indices_and_things |
| #[inline] |
| #[allow(clippy::len_zero)] // more explicit to enforce safety invariants |
| fn check_indices_and_things(self) -> Result<(), VarZeroVecFormatError> { |
| if self.len() == 0 { |
| if self.things.len() > 0 { |
| return Err(VarZeroVecFormatError::Metadata); |
| } else { |
| return Ok(()); |
| } |
| } |
| let indices_slice = self.indices_slice(); |
| assert_eq!(self.len(), indices_slice.len() + 1); |
| // Safety: i is in bounds (assertion above) |
| let mut start = 0; |
| for i in 0..self.len() { |
| // The indices array is offset by 1: indices[0] is the end of the first |
| // element and the start of the next, since the start of the first element |
| // is always things[0]. So to get the end we get element `i`. |
| let end = if let Some(end) = indices_slice.get(i) { |
| end.iule_to_usize() |
| } else { |
| // This only happens at i = self.len() - 1 = indices_slice.len() + 1 - 1 |
| // = indices_slice.len(). This is the last `end`, which is always the size of |
| // `things` and thus never stored in the array |
| self.things.len() |
| }; |
| |
| if start > end { |
| return Err(VarZeroVecFormatError::Metadata); |
| } |
| if end > self.things.len() { |
| return Err(VarZeroVecFormatError::Metadata); |
| } |
| // Safety: start..end is a valid range in self.things |
| let bytes = unsafe { self.things.get_unchecked(start..end) }; |
| T::parse_bytes(bytes).map_err(VarZeroVecFormatError::Values)?; |
| start = end; |
| } |
| Ok(()) |
| } |
| |
| /// Create an iterator over the Ts contained in VarZeroVecComponents |
| #[inline] |
| pub fn iter(self) -> impl Iterator<Item = &'a T> { |
| // The indices array doesn't contain 0 or len, we need to graft it on |
| // However we don't want to graft it on for an empty vector. |
| let (begin, end) = if self.is_empty() { |
| (None, None) |
| } else { |
| (Some(0), Some(self.things.len())) |
| }; |
| begin |
| .into_iter() |
| .chain( |
| self.indices_slice() |
| .iter() |
| .copied() |
| .map(IntegerULE::iule_to_usize), |
| ) |
| .zip( |
| self.indices_slice() |
| .iter() |
| .copied() |
| .map(IntegerULE::iule_to_usize) |
| .chain(end), |
| ) |
| .map(move |(start, end)| unsafe { self.things.get_unchecked(start..end) }) |
| .map(|bytes| unsafe { T::from_bytes_unchecked(bytes) }) |
| } |
| |
| pub fn to_vec(self) -> Vec<Box<T>> { |
| self.iter().map(T::to_boxed).collect() |
| } |
| |
| #[inline] |
| fn indices_slice(&self) -> &'a [F::Index] { |
| unsafe { F::Index::slice_from_bytes_unchecked(self.indices) } |
| } |
| |
| // Dump a debuggable representation of this type |
| #[allow(unused)] // useful for debugging |
| pub(crate) fn dump(&self) -> String { |
| let indices = self |
| .indices_slice() |
| .iter() |
| .copied() |
| .map(IntegerULE::iule_to_usize) |
| .collect::<Vec<_>>(); |
| format!("VarZeroVecComponents {{ indices: {indices:?} }}") |
| } |
| } |
| |
| impl<'a, T, F> VarZeroVecComponents<'a, T, F> |
| where |
| T: VarULE, |
| T: ?Sized, |
| T: Ord, |
| F: VarZeroVecFormat, |
| { |
| /// Binary searches a sorted `VarZeroVecComponents<T>` for the given element. For more information, see |
| /// the primitive function [`binary_search`](slice::binary_search). |
| pub fn binary_search(&self, needle: &T) -> Result<usize, usize> { |
| self.binary_search_by(|probe| probe.cmp(needle)) |
| } |
| |
| pub fn binary_search_in_range( |
| &self, |
| needle: &T, |
| range: Range<usize>, |
| ) -> Option<Result<usize, usize>> { |
| self.binary_search_in_range_by(|probe| probe.cmp(needle), range) |
| } |
| } |
| |
| impl<'a, T, F> VarZeroVecComponents<'a, T, F> |
| where |
| T: VarULE, |
| T: ?Sized, |
| F: VarZeroVecFormat, |
| { |
| /// Binary searches a sorted `VarZeroVecComponents<T>` for the given predicate. For more information, see |
| /// the primitive function [`binary_search_by`](slice::binary_search_by). |
| pub fn binary_search_by(&self, predicate: impl FnMut(&T) -> Ordering) -> Result<usize, usize> { |
| // Safety: 0 and len are in range |
| unsafe { self.binary_search_in_range_unchecked(predicate, 0..self.len()) } |
| } |
| |
| // Binary search within a range. |
| // Values returned are relative to the range start! |
| pub fn binary_search_in_range_by( |
| &self, |
| predicate: impl FnMut(&T) -> Ordering, |
| range: Range<usize>, |
| ) -> Option<Result<usize, usize>> { |
| if range.end > self.len() { |
| return None; |
| } |
| if range.end < range.start { |
| return None; |
| } |
| // Safety: We bounds checked above: end is in-bounds or len, and start is <= end |
| let range_absolute = |
| unsafe { self.binary_search_in_range_unchecked(predicate, range.clone()) }; |
| // The values returned are relative to the range start |
| Some( |
| range_absolute |
| .map(|o| o - range.start) |
| .map_err(|e| e - range.start), |
| ) |
| } |
| |
| /// Safety: range must be in range for the slice (start <= len, end <= len, start <= end) |
| unsafe fn binary_search_in_range_unchecked( |
| &self, |
| mut predicate: impl FnMut(&T) -> Ordering, |
| range: Range<usize>, |
| ) -> Result<usize, usize> { |
| // Function invariant: size is always end - start |
| let mut start = range.start; |
| let mut end = range.end; |
| let mut size; |
| |
| // Loop invariant: 0 <= start < end <= len |
| // This invariant is initialized by the function safety invariants and the loop condition |
| while start < end { |
| size = end - start; |
| // This establishes mid < end (which implies mid < len) |
| // size is end - start. start + size is end (which is <= len). |
| // mid = start + size/2 will be less than end |
| let mid = start + size / 2; |
| |
| // Safety: mid is < end <= len, so in-range |
| let cmp = predicate(self.get_unchecked(mid)); |
| |
| match cmp { |
| Ordering::Less => { |
| // This retains the loop invariant since it |
| // increments start, and we already have 0 <= start |
| // start < end is enforced by the loop condition |
| start = mid + 1; |
| } |
| Ordering::Greater => { |
| // mid < end, so this decreases end. |
| // This means end <= len is still true, and |
| // end > start is enforced by the loop condition |
| end = mid; |
| } |
| Ordering::Equal => return Ok(mid), |
| } |
| } |
| Err(start) |
| } |
| } |
| |
| /// Collects the bytes for a VarZeroSlice into a Vec. |
| pub fn get_serializable_bytes_non_empty<T, A, F>(elements: &[A]) -> Option<Vec<u8>> |
| where |
| T: VarULE + ?Sized, |
| A: EncodeAsVarULE<T>, |
| F: VarZeroVecFormat, |
| { |
| debug_assert!(!elements.is_empty()); |
| let len = compute_serializable_len::<T, A, F>(elements)?; |
| debug_assert!( |
| len >= F::Len::SIZE as u32, |
| "Must have at least F::Len::SIZE bytes to hold the length of the vector" |
| ); |
| let mut output: Vec<u8> = alloc::vec![0; len as usize]; |
| write_serializable_bytes::<T, A, F>(elements, &mut output); |
| Some(output) |
| } |
| |
| /// Writes the bytes for a VarZeroLengthlessSlice into an output buffer. |
| /// Usable for a VarZeroSlice if you first write the length bytes. |
| /// |
| /// Every byte in the buffer will be initialized after calling this function. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the buffer is not exactly the correct length. |
| pub fn write_serializable_bytes_without_length<T, A, F>(elements: &[A], output: &mut [u8]) |
| where |
| T: VarULE + ?Sized, |
| A: EncodeAsVarULE<T>, |
| F: VarZeroVecFormat, |
| { |
| assert!(elements.len() <= F::Len::MAX_VALUE as usize); |
| if elements.is_empty() { |
| return; |
| } |
| |
| // idx_offset = offset from the start of the buffer for the next index |
| let mut idx_offset: usize = 0; |
| // first_dat_offset = offset from the start of the buffer of the first data block |
| let first_dat_offset: usize = idx_offset + (elements.len() - 1) * F::Index::SIZE; |
| // dat_offset = offset from the start of the buffer of the next data block |
| let mut dat_offset: usize = first_dat_offset; |
| |
| for (i, element) in elements.iter().enumerate() { |
| let element_len = element.encode_var_ule_len(); |
| |
| // The first index is always 0. We don't write it, or update the idx offset. |
| if i != 0 { |
| let idx_limit = idx_offset + F::Index::SIZE; |
| #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior |
| let idx_slice = &mut output[idx_offset..idx_limit]; |
| // VZV expects data offsets to be stored relative to the first data block |
| let idx = dat_offset - first_dat_offset; |
| assert!(idx <= F::Index::MAX_VALUE as usize); |
| #[allow(clippy::expect_used)] // this function is explicitly panicky |
| let bytes_to_write = F::Index::iule_from_usize(idx).expect(F::Index::TOO_LARGE_ERROR); |
| idx_slice.copy_from_slice(ULE::slice_as_bytes(&[bytes_to_write])); |
| |
| idx_offset = idx_limit; |
| } |
| |
| let dat_limit = dat_offset + element_len; |
| #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior |
| let dat_slice = &mut output[dat_offset..dat_limit]; |
| element.encode_var_ule_write(dat_slice); |
| debug_assert_eq!(T::validate_bytes(dat_slice), Ok(())); |
| dat_offset = dat_limit; |
| } |
| |
| debug_assert_eq!(idx_offset, F::Index::SIZE * (elements.len() - 1)); |
| assert_eq!(dat_offset, output.len()); |
| } |
| |
| /// Writes the bytes for a VarZeroSlice into an output buffer. |
| /// |
| /// Every byte in the buffer will be initialized after calling this function. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the buffer is not exactly the correct length. |
| pub fn write_serializable_bytes<T, A, F>(elements: &[A], output: &mut [u8]) |
| where |
| T: VarULE + ?Sized, |
| A: EncodeAsVarULE<T>, |
| F: VarZeroVecFormat, |
| { |
| if elements.is_empty() { |
| return; |
| } |
| assert!(elements.len() <= F::Len::MAX_VALUE as usize); |
| #[allow(clippy::expect_used)] // This function is explicitly panicky |
| let num_elements_ule = F::Len::iule_from_usize(elements.len()).expect(F::Len::TOO_LARGE_ERROR); |
| #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior |
| output[0..F::Len::SIZE].copy_from_slice(ULE::slice_as_bytes(&[num_elements_ule])); |
| |
| #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior |
| write_serializable_bytes_without_length::<T, A, F>(elements, &mut output[F::Len::SIZE..]); |
| } |
| |
| pub fn compute_serializable_len_without_length<T, A, F>(elements: &[A]) -> Option<u32> |
| where |
| T: VarULE + ?Sized, |
| A: EncodeAsVarULE<T>, |
| F: VarZeroVecFormat, |
| { |
| let elements_len = elements.len(); |
| let Some(elements_len_minus_one) = elements_len.checked_sub(1) else { |
| // Empty vec is optimized to an empty byte representation |
| return Some(0); |
| }; |
| let idx_len: u32 = u32::try_from(elements_len_minus_one) |
| .ok()? |
| .checked_mul(F::Index::SIZE as u32)?; |
| let data_len: u32 = elements |
| .iter() |
| .map(|v| u32::try_from(v.encode_var_ule_len()).ok()) |
| .try_fold(0u32, |s, v| s.checked_add(v?))?; |
| let ret = idx_len.checked_add(data_len); |
| if let Some(r) = ret { |
| if r >= F::Index::MAX_VALUE { |
| return None; |
| } |
| } |
| ret |
| } |
| |
| pub fn compute_serializable_len<T, A, F>(elements: &[A]) -> Option<u32> |
| where |
| T: VarULE + ?Sized, |
| A: EncodeAsVarULE<T>, |
| F: VarZeroVecFormat, |
| { |
| compute_serializable_len_without_length::<T, A, F>(elements).map(|x| x + F::Len::SIZE as u32) |
| } |