blob: 80ce5bcf05aece93ceeac52f5380d744ade26e86 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtNetwork module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
//#define QSSLSOCKET_DEBUG
/*!
\class QSslSocket
\brief The QSslSocket class provides an SSL encrypted socket for both
clients and servers.
\since 4.3
\reentrant
\ingroup network
\ingroup ssl
\inmodule QtNetwork
QSslSocket establishes a secure, encrypted TCP connection you can
use for transmitting encrypted data. It can operate in both client
and server mode, and it supports modern SSL protocols, including
SSLv3 and TLSv1. By default, QSslSocket uses SSLv3, but you can
change the SSL protocol by calling setProtocol() as long as you do
it before the handshake has started.
SSL encryption operates on top of the existing TCP stream after
the socket enters the ConnectedState. There are two simple ways to
establish a secure connection using QSslSocket: With an immediate
SSL handshake, or with a delayed SSL handshake occurring after the
connection has been established in unencrypted mode.
The most common way to use QSslSocket is to construct an object
and start a secure connection by calling connectToHostEncrypted().
This method starts an immediate SSL handshake once the connection
has been established.
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 0
As with a plain QTcpSocket, QSslSocket enters the HostLookupState,
ConnectingState, and finally the ConnectedState, if the connection
is successful. The handshake then starts automatically, and if it
succeeds, the encrypted() signal is emitted to indicate the socket
has entered the encrypted state and is ready for use.
Note that data can be written to the socket immediately after the
return from connectToHostEncrypted() (i.e., before the encrypted()
signal is emitted). The data is queued in QSslSocket until after
the encrypted() signal is emitted.
An example of using the delayed SSL handshake to secure an
existing connection is the case where an SSL server secures an
incoming connection. Suppose you create an SSL server class as a
subclass of QTcpServer. You would override
QTcpServer::incomingConnection() with something like the example
below, which first constructs an instance of QSslSocket and then
calls setSocketDescriptor() to set the new socket's descriptor to
the existing one passed in. It then initiates the SSL handshake
by calling startServerEncryption().
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 1
If an error occurs, QSslSocket emits the sslErrors() signal. In this
case, if no action is taken to ignore the error(s), the connection
is dropped. To continue, despite the occurrence of an error, you
can call ignoreSslErrors(), either from within this slot after the
error occurs, or any time after construction of the QSslSocket and
before the connection is attempted. This will allow QSslSocket to
ignore the errors it encounters when establishing the identity of
the peer. Ignoring errors during an SSL handshake should be used
with caution, since a fundamental characteristic of secure
connections is that they should be established with a successful
handshake.
Once encrypted, you use QSslSocket as a regular QTcpSocket. When
readyRead() is emitted, you can call read(), canReadLine() and
readLine(), or getChar() to read decrypted data from QSslSocket's
internal buffer, and you can call write() or putChar() to write
data back to the peer. QSslSocket will automatically encrypt the
written data for you, and emit encryptedBytesWritten() once
the data has been written to the peer.
As a convenience, QSslSocket supports QTcpSocket's blocking
functions waitForConnected(), waitForReadyRead(),
waitForBytesWritten(), and waitForDisconnected(). It also provides
waitForEncrypted(), which will block the calling thread until an
encrypted connection has been established.
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 2
QSslSocket provides an extensive, easy-to-use API for handling
cryptographic ciphers, private keys, and local, peer, and
Certification Authority (CA) certificates. It also provides an API
for handling errors that occur during the handshake phase.
The following features can also be customized:
\list
\o The socket's cryptographic cipher suite can be customized before
the handshake phase with setCiphers() and setDefaultCiphers().
\o The socket's local certificate and private key can be customized
before the handshake phase with setLocalCertificate() and
setPrivateKey().
\o The CA certificate database can be extended and customized with
addCaCertificate(), addCaCertificates(), setCaCertificates(),
addDefaultCaCertificate(), addDefaultCaCertificates(), and
setDefaultCaCertificates().
\endlist
For more information about ciphers and certificates, refer to QSslCipher and
QSslCertificate.
This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (\l{http://www.openssl.org/}).
\note Be aware of the difference between the bytesWritten() signal and
the encryptedBytesWritten() signal. For a QTcpSocket, bytesWritten()
will get emitted as soon as data has been written to the TCP socket.
For a QSslSocket, bytesWritten() will get emitted when the data
is being encrypted and encryptedBytesWritten()
will get emitted as soon as data has been written to the TCP socket.
\section1 Symbian Platform Security Requirements
On Symbian, processes which use this class must have the
\c NetworkServices platform security capability. If the client
process lacks this capability, operations will fail.
Platform security capabilities are added via the
\l{qmake-variable-reference.html#target-capability}{TARGET.CAPABILITY}
qmake variable.
\sa QSslCertificate, QSslCipher, QSslError
*/
/*!
\enum QSslSocket::SslMode
Describes the connection modes available for QSslSocket.
\value UnencryptedMode The socket is unencrypted. Its
behavior is identical to QTcpSocket.
\value SslClientMode The socket is a client-side SSL socket.
It is either alreayd encrypted, or it is in the SSL handshake
phase (see QSslSocket::isEncrypted()).
\value SslServerMode The socket is a server-side SSL socket.
It is either already encrypted, or it is in the SSL handshake
phase (see QSslSocket::isEncrypted()).
*/
/*!
\enum QSslSocket::PeerVerifyMode
\since 4.4
Describes the peer verification modes for QSslSocket. The default mode is
AutoVerifyPeer, which selects an appropriate mode depending on the
socket's QSocket::SslMode.
\value VerifyNone QSslSocket will not request a certificate from the
peer. You can set this mode if you are not interested in the identity of
the other side of the connection. The connection will still be encrypted,
and your socket will still send its local certificate to the peer if it's
requested.
\value QueryPeer QSslSocket will request a certificate from the peer, but
does not require this certificate to be valid. This is useful when you
want to display peer certificate details to the user without affecting the
actual SSL handshake. This mode is the default for servers.
\value VerifyPeer QSslSocket will request a certificate from the peer
during the SSL handshake phase, and requires that this certificate is
valid. On failure, QSslSocket will emit the QSslSocket::sslErrors()
signal. This mode is the default for clients.
\value AutoVerifyPeer QSslSocket will automatically use QueryPeer for
server sockets and VerifyPeer for client sockets.
\sa QSslSocket::peerVerifyMode()
*/
/*!
\fn QSslSocket::encrypted()
This signal is emitted when QSslSocket enters encrypted mode. After this
signal has been emitted, QSslSocket::isEncrypted() will return true, and
all further transmissions on the socket will be encrypted.
\sa QSslSocket::connectToHostEncrypted(), QSslSocket::isEncrypted()
*/
/*!
\fn QSslSocket::modeChanged(QSslSocket::SslMode mode)
This signal is emitted when QSslSocket changes from \l
QSslSocket::UnencryptedMode to either \l QSslSocket::SslClientMode or \l
QSslSocket::SslServerMode. \a mode is the new mode.
\sa QSslSocket::mode()
*/
/*!
\fn QSslSocket::encryptedBytesWritten(qint64 written)
\since 4.4
This signal is emitted when QSslSocket writes its encrypted data to the
network. The \a written parameter contains the number of bytes that were
successfully written.
\sa QIODevice::bytesWritten()
*/
/*!
\fn void QSslSocket::peerVerifyError(const QSslError &error)
\since 4.4
QSslSocket can emit this signal several times during the SSL handshake,
before encryption has been established, to indicate that an error has
occurred while establishing the identity of the peer. The \a error is
usually an indication that QSslSocket is unable to securely identify the
peer.
This signal provides you with an early indication when something's wrong.
By connecting to this signal, you can manually choose to tear down the
connection from inside the connected slot before the handshake has
completed. If no action is taken, QSslSocket will proceed to emitting
QSslSocket::sslErrors().
\sa sslErrors()
*/
/*!
\fn void QSslSocket::sslErrors(const QList<QSslError> &errors);
QSslSocket emits this signal after the SSL handshake to indicate that one
or more errors have occurred while establishing the identity of the
peer. The errors are usually an indication that QSslSocket is unable to
securely identify the peer. Unless any action is taken, the connection
will be dropped after this signal has been emitted.
If you want to continue connecting despite the errors that have occurred,
you must call QSslSocket::ignoreSslErrors() from inside a slot connected to
this signal. If you need to access the error list at a later point, you
can call sslErrors() (without arguments).
\a errors contains one or more errors that prevent QSslSocket from
verifying the identity of the peer.
Note: You cannot use Qt::QueuedConnection when connecting to this signal,
or calling QSslSocket::ignoreSslErrors() will have no effect.
\sa peerVerifyError()
*/
#include "qsslcipher.h"
#include "qsslsocket.h"
#include "qsslsocket_openssl_p.h"
#include "qsslconfiguration_p.h"
#include <QtCore/qdebug.h>
#include <QtCore/qdir.h>
#include <QtCore/qmutex.h>
#include <QtCore/qelapsedtimer.h>
#include <QtNetwork/qhostaddress.h>
#include <QtNetwork/qhostinfo.h>
QT_BEGIN_NAMESPACE
/*
Returns the difference between msecs and elapsed. If msecs is -1,
however, -1 is returned.
*/
static int qt_timeout_value(int msecs, int elapsed)
{
if (msecs == -1)
return -1;
int timeout = msecs - elapsed;
return timeout < 0 ? 0 : timeout;
}
class QSslSocketGlobalData
{
public:
QSslSocketGlobalData() : config(new QSslConfigurationPrivate) {}
QMutex mutex;
QList<QSslCipher> supportedCiphers;
QExplicitlySharedDataPointer<QSslConfigurationPrivate> config;
};
Q_GLOBAL_STATIC(QSslSocketGlobalData, globalData)
/*!
Constructs a QSslSocket object. \a parent is passed to QObject's
constructor. The new socket's \l {QSslCipher} {cipher} suite is
set to the one returned by the static method defaultCiphers().
*/
QSslSocket::QSslSocket(QObject *parent)
: QTcpSocket(*new QSslSocketBackendPrivate, parent)
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::QSslSocket(" << parent << "), this =" << (void *)this;
#endif
d->q_ptr = this;
d->init();
}
/*!
Destroys the QSslSocket.
*/
QSslSocket::~QSslSocket()
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::~QSslSocket(), this =" << (void *)this;
#endif
delete d->plainSocket;
d->plainSocket = 0;
}
/*!
Starts an encrypted connection to the device \a hostName on \a
port, using \a mode as the \l OpenMode. This is equivalent to
calling connectToHost() to establish the connection, followed by a
call to startClientEncryption().
QSslSocket first enters the HostLookupState. Then, after entering
either the event loop or one of the waitFor...() functions, it
enters the ConnectingState, emits connected(), and then initiates
the SSL client handshake. At each state change, QSslSocket emits
signal stateChanged().
After initiating the SSL client handshake, if the identity of the
peer can't be established, signal sslErrors() is emitted. If you
want to ignore the errors and continue connecting, you must call
ignoreSslErrors(), either from inside a slot function connected to
the sslErrors() signal, or prior to entering encrypted mode. If
ignoreSslErrors() is not called, the connection is dropped, signal
disconnected() is emitted, and QSslSocket returns to the
UnconnectedState.
If the SSL handshake is successful, QSslSocket emits encrypted().
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 3
\bold{Note:} The example above shows that text can be written to
the socket immediately after requesting the encrypted connection,
before the encrypted() signal has been emitted. In such cases, the
text is queued in the object and written to the socket \e after
the connection is established and the encrypted() signal has been
emitted.
The default for \a mode is \l ReadWrite.
If you want to create a QSslSocket on the server side of a connection, you
should instead call startServerEncryption() upon receiving the incoming
connection through QTcpServer.
\sa connectToHost(), startClientEncryption(), waitForConnected(), waitForEncrypted()
*/
void QSslSocket::connectToHostEncrypted(const QString &hostName, quint16 port, OpenMode mode)
{
Q_D(QSslSocket);
if (d->state == ConnectedState || d->state == ConnectingState) {
qWarning("QSslSocket::connectToHostEncrypted() called when already connecting/connected");
return;
}
d->init();
d->autoStartHandshake = true;
d->initialized = true;
// Note: When connecting to localhost, some platforms (e.g., HP-UX and some BSDs)
// establish the connection immediately (i.e., first attempt).
connectToHost(hostName, port, mode);
}
/*!
\since 4.6
\overload
In addition to the original behaviour of connectToHostEncrypted,
this overloaded method enables the usage of a different hostname
(\a sslPeerName) for the certificate validation instead of
the one used for the TCP connection (\a hostName).
\sa connectToHostEncrypted()
*/
void QSslSocket::connectToHostEncrypted(const QString &hostName, quint16 port,
const QString &sslPeerName, OpenMode mode)
{
Q_D(QSslSocket);
if (d->state == ConnectedState || d->state == ConnectingState) {
qWarning("QSslSocket::connectToHostEncrypted() called when already connecting/connected");
return;
}
d->init();
d->autoStartHandshake = true;
d->initialized = true;
d->verificationPeerName = sslPeerName;
// Note: When connecting to localhost, some platforms (e.g., HP-UX and some BSDs)
// establish the connection immediately (i.e., first attempt).
connectToHost(hostName, port, mode);
}
/*!
Initializes QSslSocket with the native socket descriptor \a
socketDescriptor. Returns true if \a socketDescriptor is accepted
as a valid socket descriptor; otherwise returns false.
The socket is opened in the mode specified by \a openMode, and
enters the socket state specified by \a state.
\bold{Note:} It is not possible to initialize two sockets with the same
native socket descriptor.
\sa socketDescriptor()
*/
bool QSslSocket::setSocketDescriptor(int socketDescriptor, SocketState state, OpenMode openMode)
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::setSocketDescriptor(" << socketDescriptor << ','
<< state << ',' << openMode << ')';
#endif
if (!d->plainSocket)
d->createPlainSocket(openMode);
bool retVal = d->plainSocket->setSocketDescriptor(socketDescriptor, state, openMode);
d->cachedSocketDescriptor = d->plainSocket->socketDescriptor();
setSocketError(d->plainSocket->error());
setSocketState(state);
setOpenMode(openMode);
setLocalPort(d->plainSocket->localPort());
setLocalAddress(d->plainSocket->localAddress());
setPeerPort(d->plainSocket->peerPort());
setPeerAddress(d->plainSocket->peerAddress());
setPeerName(d->plainSocket->peerName());
return retVal;
}
/*!
\since 4.6
Sets the given \a option to the value described by \a value.
\sa socketOption()
*/
void QSslSocket::setSocketOption(QAbstractSocket::SocketOption option, const QVariant &value)
{
Q_D(QSslSocket);
if (d->plainSocket)
d->plainSocket->setSocketOption(option, value);
}
/*!
\since 4.6
Returns the value of the \a option option.
\sa setSocketOption()
*/
QVariant QSslSocket::socketOption(QAbstractSocket::SocketOption option)
{
Q_D(QSslSocket);
if (d->plainSocket)
return d->plainSocket->socketOption(option);
else
return QVariant();
}
/*!
Returns the current mode for the socket; either UnencryptedMode, where
QSslSocket behaves identially to QTcpSocket, or one of SslClientMode or
SslServerMode, where the client is either negotiating or in encrypted
mode.
When the mode changes, QSslSocket emits modeChanged()
\sa SslMode
*/
QSslSocket::SslMode QSslSocket::mode() const
{
Q_D(const QSslSocket);
return d->mode;
}
/*!
Returns true if the socket is encrypted; otherwise, false is returned.
An encrypted socket encrypts all data that is written by calling write()
or putChar() before the data is written to the network, and decrypts all
incoming data as the data is received from the network, before you call
read(), readLine() or getChar().
QSslSocket emits encrypted() when it enters encrypted mode.
You can call sessionCipher() to find which cryptographic cipher is used to
encrypt and decrypt your data.
\sa mode()
*/
bool QSslSocket::isEncrypted() const
{
Q_D(const QSslSocket);
return d->connectionEncrypted;
}
/*!
Returns the socket's SSL protocol. By default, \l QSsl::SslV3 is used.
\sa setProtocol()
*/
QSsl::SslProtocol QSslSocket::protocol() const
{
Q_D(const QSslSocket);
return d->configuration.protocol;
}
/*!
Sets the socket's SSL protocol to \a protocol. This will affect the next
initiated handshake; calling this function on an already-encrypted socket
will not affect the socket's protocol.
*/
void QSslSocket::setProtocol(QSsl::SslProtocol protocol)
{
Q_D(QSslSocket);
d->configuration.protocol = protocol;
}
/*!
\since 4.4
Returns the socket's verify mode. This mode mode decides whether
QSslSocket should request a certificate from the peer (i.e., the client
requests a certificate from the server, or a server requesting a
certificate from the client), and whether it should require that this
certificate is valid.
The default mode is AutoVerifyPeer, which tells QSslSocket to use
VerifyPeer for clients and QueryPeer for servers.
\sa setPeerVerifyMode(), peerVerifyDepth(), mode()
*/
QSslSocket::PeerVerifyMode QSslSocket::peerVerifyMode() const
{
Q_D(const QSslSocket);
return d->configuration.peerVerifyMode;
}
/*!
\since 4.4
Sets the socket's verify mode to \a mode. This mode decides whether
QSslSocket should request a certificate from the peer (i.e., the client
requests a certificate from the server, or a server requesting a
certificate from the client), and whether it should require that this
certificate is valid.
The default mode is AutoVerifyPeer, which tells QSslSocket to use
VerifyPeer for clients and QueryPeer for servers.
Setting this mode after encryption has started has no effect on the
current connection.
\sa peerVerifyMode(), setPeerVerifyDepth(), mode()
*/
void QSslSocket::setPeerVerifyMode(QSslSocket::PeerVerifyMode mode)
{
Q_D(QSslSocket);
d->configuration.peerVerifyMode = mode;
}
/*!
\since 4.4
Returns the maximum number of certificates in the peer's certificate chain
to be checked during the SSL handshake phase, or 0 (the default) if no
maximum depth has been set, indicating that the whole certificate chain
should be checked.
The certificates are checked in issuing order, starting with the peer's
own certificate, then its issuer's certificate, and so on.
\sa setPeerVerifyDepth(), peerVerifyMode()
*/
int QSslSocket::peerVerifyDepth() const
{
Q_D(const QSslSocket);
return d->configuration.peerVerifyDepth;
}
/*!
\since 4.4
Sets the maximum number of certificates in the peer's certificate chain to
be checked during the SSL handshake phase, to \a depth. Setting a depth of
0 means that no maximum depth is set, indicating that the whole
certificate chain should be checked.
The certificates are checked in issuing order, starting with the peer's
own certificate, then its issuer's certificate, and so on.
\sa peerVerifyDepth(), setPeerVerifyMode()
*/
void QSslSocket::setPeerVerifyDepth(int depth)
{
Q_D(QSslSocket);
if (depth < 0) {
qWarning("QSslSocket::setPeerVerifyDepth: cannot set negative depth of %d", depth);
return;
}
d->configuration.peerVerifyDepth = depth;
}
/*!
\reimp
Returns the number of decrypted bytes that are immediately available for
reading.
*/
qint64 QSslSocket::bytesAvailable() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return QIODevice::bytesAvailable() + (d->plainSocket ? d->plainSocket->bytesAvailable() : 0);
return QIODevice::bytesAvailable() + d->readBuffer.size();
}
/*!
\reimp
Returns the number of unencrypted bytes that are waiting to be encrypted
and written to the network.
*/
qint64 QSslSocket::bytesToWrite() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return d->plainSocket ? d->plainSocket->bytesToWrite() : 0;
return d->writeBuffer.size();
}
/*!
\since 4.4
Returns the number of encrypted bytes that are awaiting decryption.
Normally, this function will return 0 because QSslSocket decrypts its
incoming data as soon as it can.
*/
qint64 QSslSocket::encryptedBytesAvailable() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return 0;
return d->plainSocket->bytesAvailable();
}
/*!
\since 4.4
Returns the number of encrypted bytes that are waiting to be written to
the network.
*/
qint64 QSslSocket::encryptedBytesToWrite() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return 0;
return d->plainSocket->bytesToWrite();
}
/*!
\reimp
Returns true if you can read one while line (terminated by a single ASCII
'\n' character) of decrypted characters; otherwise, false is returned.
*/
bool QSslSocket::canReadLine() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return QIODevice::canReadLine() || (d->plainSocket && d->plainSocket->canReadLine());
return QIODevice::canReadLine() || (!d->readBuffer.isEmpty() && d->readBuffer.canReadLine());
}
/*!
\reimp
*/
void QSslSocket::close()
{
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::close()";
#endif
Q_D(QSslSocket);
if (d->plainSocket)
d->plainSocket->close();
QTcpSocket::close();
// must be cleared, reading/writing not possible on closed socket:
d->readBuffer.clear();
d->writeBuffer.clear();
// for QTcpSocket this is already done because it uses the readBuffer/writeBuffer
// if the QIODevice it is based on
// ### FIXME QSslSocket should probably do similar instead of having
// its own readBuffer/writeBuffer
}
/*!
\reimp
*/
bool QSslSocket::atEnd() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return QIODevice::atEnd() && (!d->plainSocket || d->plainSocket->atEnd());
return QIODevice::atEnd() && d->readBuffer.isEmpty();
}
/*!
This function writes as much as possible from the internal write buffer to
the underlying network socket, without blocking. If any data was written,
this function returns true; otherwise false is returned.
Call this function if you need QSslSocket to start sending buffered data
immediately. The number of bytes successfully written depends on the
operating system. In most cases, you do not need to call this function,
because QAbstractSocket will start sending data automatically once control
goes back to the event loop. In the absence of an event loop, call
waitForBytesWritten() instead.
\sa write(), waitForBytesWritten()
*/
// Note! docs copied from QAbstractSocket::flush()
bool QSslSocket::flush()
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::flush()";
#endif
if (d->mode != UnencryptedMode)
// encrypt any unencrypted bytes in our buffer
d->transmit();
return d->plainSocket ? d->plainSocket->flush() : false;
}
/*!
\since 4.4
Sets the size of QSslSocket's internal read buffer to be \a size bytes.
*/
void QSslSocket::setReadBufferSize(qint64 size)
{
Q_D(QSslSocket);
d->readBufferMaxSize = size;
// set the plain socket's buffer size to 1k if we have a limit
// see also the same logic in QSslSocketPrivate::createPlainSocket
if (d->plainSocket) {
if (d->mode == UnencryptedMode)
d->plainSocket->setReadBufferSize(size);
else
d->plainSocket->setReadBufferSize(size ? 1024 : 0);
}
}
/*!
Aborts the current connection and resets the socket. Unlike
disconnectFromHost(), this function immediately closes the socket,
clearing any pending data in the write buffer.
\sa disconnectFromHost(), close()
*/
void QSslSocket::abort()
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::abort()";
#endif
if (d->plainSocket)
d->plainSocket->abort();
close();
}
/*!
\since 4.4
Returns the socket's SSL configuration state. The default SSL
configuration of a socket is to use the default ciphers,
default CA certificates, no local private key or certificate.
The SSL configuration also contains fields that can change with
time without notice.
\sa localCertificate(), peerCertificate(), peerCertificateChain(),
sessionCipher(), privateKey(), ciphers(), caCertificates()
*/
QSslConfiguration QSslSocket::sslConfiguration() const
{
Q_D(const QSslSocket);
// create a deep copy of our configuration
QSslConfigurationPrivate *copy = new QSslConfigurationPrivate(d->configuration);
copy->ref = 0; // the QSslConfiguration constructor refs up
copy->sessionCipher = d->sessionCipher();
return QSslConfiguration(copy);
}
/*!
\since 4.4
Sets the socket's SSL configuration to be the contents of \a configuration.
This function sets the local certificate, the ciphers, the private key and the CA
certificates to those stored in \a configuration.
It is not possible to set the SSL-state related fields.
\sa setLocalCertificate(), setPrivateKey(), setCaCertificates(), setCiphers()
*/
void QSslSocket::setSslConfiguration(const QSslConfiguration &configuration)
{
Q_D(QSslSocket);
d->configuration.localCertificate = configuration.localCertificate();
d->configuration.privateKey = configuration.privateKey();
d->configuration.ciphers = configuration.ciphers();
d->configuration.caCertificates = configuration.caCertificates();
d->configuration.peerVerifyDepth = configuration.peerVerifyDepth();
d->configuration.peerVerifyMode = configuration.peerVerifyMode();
d->configuration.protocol = configuration.protocol();
}
/*!
Sets the socket's local certificate to \a certificate. The local
certificate is necessary if you need to confirm your identity to the
peer. It is used together with the private key; if you set the local
certificate, you must also set the private key.
The local certificate and private key are always necessary for server
sockets, but are also rarely used by client sockets if the server requires
the client to authenticate.
\sa localCertificate(), setPrivateKey()
*/
void QSslSocket::setLocalCertificate(const QSslCertificate &certificate)
{
Q_D(QSslSocket);
d->configuration.localCertificate = certificate;
}
/*!
\overload
Sets the socket's local \l {QSslCertificate} {certificate} to the
first one found in file \a path, which is parsed according to the
specified \a format.
*/
void QSslSocket::setLocalCertificate(const QString &path,
QSsl::EncodingFormat format)
{
Q_D(QSslSocket);
QFile file(path);
if (file.open(QIODevice::ReadOnly | QIODevice::Text))
d->configuration.localCertificate = QSslCertificate(file.readAll(), format);
}
/*!
Returns the socket's local \l {QSslCertificate} {certificate}, or
an empty certificate if no local certificate has been assigned.
\sa setLocalCertificate(), privateKey()
*/
QSslCertificate QSslSocket::localCertificate() const
{
Q_D(const QSslSocket);
return d->configuration.localCertificate;
}
/*!
Returns the peer's digital certificate (i.e., the immediate
certificate of the host you are connected to), or a null
certificate, if the peer has not assigned a certificate.
The peer certificate is checked automatically during the
handshake phase, so this function is normally used to fetch
the certificate for display or for connection diagnostic
purposes. It contains information about the peer, including
its host name, the certificate issuer, and the peer's public
key.
Because the peer certificate is set during the handshake phase, it
is safe to access the peer certificate from a slot connected to
the sslErrors() signal or the encrypted() signal.
If a null certificate is returned, it can mean the SSL handshake
failed, or it can mean the host you are connected to doesn't have
a certificate, or it can mean there is no connection.
If you want to check the peer's complete chain of certificates,
use peerCertificateChain() to get them all at once.
\sa peerCertificateChain()
*/
QSslCertificate QSslSocket::peerCertificate() const
{
Q_D(const QSslSocket);
return d->configuration.peerCertificate;
}
/*!
Returns the peer's chain of digital certificates, or an empty list
of certificates.
Peer certificates are checked automatically during the handshake
phase. This function is normally used to fetch certificates for
display, or for performing connection diagnostics. Certificates
contain information about the peer and the certificate issuers,
including host name, issuer names, and issuer public keys.
The peer certificates are set in QSslSocket during the handshake
phase, so it is safe to call this function from a slot connected
to the sslErrors() signal or the encrypted() signal.
If an empty list is returned, it can mean the SSL handshake
failed, or it can mean the host you are connected to doesn't have
a certificate, or it can mean there is no connection.
If you want to get only the peer's immediate certificate, use
peerCertificate().
\sa peerCertificate()
*/
QList<QSslCertificate> QSslSocket::peerCertificateChain() const
{
Q_D(const QSslSocket);
return d->configuration.peerCertificateChain;
}
/*!
Returns the socket's cryptographic \l {QSslCipher} {cipher}, or a
null cipher if the connection isn't encrypted. The socket's cipher
for the session is set during the handshake phase. The cipher is
used to encrypt and decrypt data transmitted through the socket.
QSslSocket also provides functions for setting the ordered list of
ciphers from which the handshake phase will eventually select the
session cipher. This ordered list must be in place before the
handshake phase begins.
\sa ciphers(), setCiphers(), setDefaultCiphers(), defaultCiphers(),
supportedCiphers()
*/
QSslCipher QSslSocket::sessionCipher() const
{
Q_D(const QSslSocket);
return d->sessionCipher();
}
/*!
Sets the socket's private \l {QSslKey} {key} to \a key. The
private key and the local \l {QSslCertificate} {certificate} are
used by clients and servers that must prove their identity to
SSL peers.
Both the key and the local certificate are required if you are
creating an SSL server socket. If you are creating an SSL client
socket, the key and local certificate are required if your client
must identify itself to an SSL server.
\sa privateKey(), setLocalCertificate()
*/
void QSslSocket::setPrivateKey(const QSslKey &key)
{
Q_D(QSslSocket);
d->configuration.privateKey = key;
}
/*!
\overload
Reads the string in file \a fileName and decodes it using
a specified \a algorithm and encoding \a format to construct
an \l {QSslKey} {SSL key}. If the encoded key is encrypted,
\a passPhrase is used to decrypt it.
The socket's private key is set to the constructed key. The
private key and the local \l {QSslCertificate} {certificate} are
used by clients and servers that must prove their identity to SSL
peers.
Both the key and the local certificate are required if you are
creating an SSL server socket. If you are creating an SSL client
socket, the key and local certificate are required if your client
must identify itself to an SSL server.
\sa privateKey(), setLocalCertificate()
*/
void QSslSocket::setPrivateKey(const QString &fileName, QSsl::KeyAlgorithm algorithm,
QSsl::EncodingFormat format, const QByteArray &passPhrase)
{
Q_D(QSslSocket);
QFile file(fileName);
if (file.open(QIODevice::ReadOnly)) {
d->configuration.privateKey = QSslKey(file.readAll(), algorithm,
format, QSsl::PrivateKey, passPhrase);
}
}
/*!
Returns this socket's private key.
\sa setPrivateKey(), localCertificate()
*/
QSslKey QSslSocket::privateKey() const
{
Q_D(const QSslSocket);
return d->configuration.privateKey;
}
/*!
Returns this socket's current cryptographic cipher suite. This
list is used during the socket's handshake phase for choosing a
session cipher. The returned list of ciphers is ordered by
descending preference. (i.e., the first cipher in the list is the
most preferred cipher). The session cipher will be the first one
in the list that is also supported by the peer.
By default, the handshake phase can choose any of the ciphers
supported by this system's SSL libraries, which may vary from
system to system. The list of ciphers supported by this system's
SSL libraries is returned by supportedCiphers(). You can restrict
the list of ciphers used for choosing the session cipher for this
socket by calling setCiphers() with a subset of the supported
ciphers. You can revert to using the entire set by calling
setCiphers() with the list returned by supportedCiphers().
You can restrict the list of ciphers used for choosing the session
cipher for \e all sockets by calling setDefaultCiphers() with a
subset of the supported ciphers. You can revert to using the
entire set by calling setCiphers() with the list returned by
supportedCiphers().
\sa setCiphers(), defaultCiphers(), setDefaultCiphers(), supportedCiphers()
*/
QList<QSslCipher> QSslSocket::ciphers() const
{
Q_D(const QSslSocket);
return d->configuration.ciphers;
}
/*!
Sets the cryptographic cipher suite for this socket to \a ciphers,
which must contain a subset of the ciphers in the list returned by
supportedCiphers().
Restricting the cipher suite must be done before the handshake
phase, where the session cipher is chosen.
\sa ciphers(), setDefaultCiphers(), supportedCiphers()
*/
void QSslSocket::setCiphers(const QList<QSslCipher> &ciphers)
{
Q_D(QSslSocket);
d->configuration.ciphers = ciphers;
}
/*!
Sets the cryptographic cipher suite for this socket to \a ciphers, which
is a colon-separated list of cipher suite names. The ciphers are listed in
order of preference, starting with the most preferred cipher. For example:
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 4
Each cipher name in \a ciphers must be the name of a cipher in the
list returned by supportedCiphers(). Restricting the cipher suite
must be done before the handshake phase, where the session cipher
is chosen.
\sa ciphers(), setDefaultCiphers(), supportedCiphers()
*/
void QSslSocket::setCiphers(const QString &ciphers)
{
Q_D(QSslSocket);
d->configuration.ciphers.clear();
foreach (const QString &cipherName, ciphers.split(QLatin1String(":"),QString::SkipEmptyParts)) {
for (int i = 0; i < 3; ++i) {
// ### Crude
QSslCipher cipher(cipherName, QSsl::SslProtocol(i));
if (!cipher.isNull())
d->configuration.ciphers << cipher;
}
}
}
/*!
Sets the default cryptographic cipher suite for all sockets in
this application to \a ciphers, which must contain a subset of the
ciphers in the list returned by supportedCiphers().
Restricting the default cipher suite only affects SSL sockets
that perform their handshake phase after the default cipher
suite has been changed.
\sa setCiphers(), defaultCiphers(), supportedCiphers()
*/
void QSslSocket::setDefaultCiphers(const QList<QSslCipher> &ciphers)
{
QSslSocketPrivate::setDefaultCiphers(ciphers);
}
/*!
Returns the default cryptographic cipher suite for all sockets in
this application. This list is used during the socket's handshake
phase when negotiating with the peer to choose a session cipher.
The list is ordered by preference (i.e., the first cipher in the
list is the most preferred cipher).
By default, the handshake phase can choose any of the ciphers
supported by this system's SSL libraries, which may vary from
system to system. The list of ciphers supported by this system's
SSL libraries is returned by supportedCiphers().
\sa supportedCiphers()
*/
QList<QSslCipher> QSslSocket::defaultCiphers()
{
return QSslSocketPrivate::defaultCiphers();
}
/*!
Returns the list of cryptographic ciphers supported by this
system. This list is set by the system's SSL libraries and may
vary from system to system.
\sa defaultCiphers(), ciphers(), setCiphers()
*/
QList<QSslCipher> QSslSocket::supportedCiphers()
{
return QSslSocketPrivate::supportedCiphers();
}
/*!
Searches all files in the \a path for certificates encoded in the
specified \a format and adds them to this socket's CA certificate
database. \a path can be explicit, or it can contain wildcards in
the format specified by \a syntax. Returns true if one or more
certificates are added to the socket's CA certificate database;
otherwise returns false.
The CA certificate database is used by the socket during the
handshake phase to validate the peer's certificate.
For more precise control, use addCaCertificate().
\sa addCaCertificate(), QSslCertificate::fromPath()
*/
bool QSslSocket::addCaCertificates(const QString &path, QSsl::EncodingFormat format,
QRegExp::PatternSyntax syntax)
{
Q_D(QSslSocket);
QList<QSslCertificate> certs = QSslCertificate::fromPath(path, format, syntax);
if (certs.isEmpty())
return false;
d->configuration.caCertificates += certs;
return true;
}
/*!
Adds the \a certificate to this socket's CA certificate database.
The CA certificate database is used by the socket during the
handshake phase to validate the peer's certificate.
To add multiple certificates, use addCaCertificates().
\sa caCertificates(), setCaCertificates()
*/
void QSslSocket::addCaCertificate(const QSslCertificate &certificate)
{
Q_D(QSslSocket);
d->configuration.caCertificates += certificate;
}
/*!
Adds the \a certificates to this socket's CA certificate database.
The CA certificate database is used by the socket during the
handshake phase to validate the peer's certificate.
For more precise control, use addCaCertificate().
\sa caCertificates(), addDefaultCaCertificate()
*/
void QSslSocket::addCaCertificates(const QList<QSslCertificate> &certificates)
{
Q_D(QSslSocket);
d->configuration.caCertificates += certificates;
}
/*!
Sets this socket's CA certificate database to be \a certificates.
The certificate database must be set prior to the SSL handshake.
The CA certificate database is used by the socket during the
handshake phase to validate the peer's certificate.
The CA certificate database can be reset to the current default CA
certificate database by calling this function with the list of CA
certificates returned by defaultCaCertificates().
\sa defaultCaCertificates()
*/
void QSslSocket::setCaCertificates(const QList<QSslCertificate> &certificates)
{
Q_D(QSslSocket);
d->configuration.caCertificates = certificates;
}
/*!
Returns this socket's CA certificate database. The CA certificate
database is used by the socket during the handshake phase to
validate the peer's certificate. It can be moodified prior to the
handshake with addCaCertificate(), addCaCertificates(), and
setCaCertificates().
\sa addCaCertificate(), addCaCertificates(), setCaCertificates()
*/
QList<QSslCertificate> QSslSocket::caCertificates() const
{
Q_D(const QSslSocket);
return d->configuration.caCertificates;
}
/*!
Searches all files in the \a path for certificates with the
specified \a encoding and adds them to the default CA certificate
database. \a path can be an explicit file, or it can contain
wildcards in the format specified by \a syntax. Returns true if
any CA certificates are added to the default database.
Each SSL socket's CA certificate database is initialized to the
default CA certificate database.
\sa defaultCaCertificates(), addCaCertificates(), addDefaultCaCertificate()
*/
bool QSslSocket::addDefaultCaCertificates(const QString &path, QSsl::EncodingFormat encoding,
QRegExp::PatternSyntax syntax)
{
return QSslSocketPrivate::addDefaultCaCertificates(path, encoding, syntax);
}
/*!
Adds \a certificate to the default CA certificate database. Each
SSL socket's CA certificate database is initialized to the default
CA certificate database.
\sa defaultCaCertificates(), addCaCertificates()
*/
void QSslSocket::addDefaultCaCertificate(const QSslCertificate &certificate)
{
QSslSocketPrivate::addDefaultCaCertificate(certificate);
}
/*!
Adds \a certificates to the default CA certificate database. Each
SSL socket's CA certificate database is initialized to the default
CA certificate database.
\sa defaultCaCertificates(), addCaCertificates()
*/
void QSslSocket::addDefaultCaCertificates(const QList<QSslCertificate> &certificates)
{
QSslSocketPrivate::addDefaultCaCertificates(certificates);
}
/*!
Sets the default CA certificate database to \a certificates. The
default CA certificate database is originally set to your system's
default CA certificate database. If no system default database is
found, Qt will provide its own default database. You can override
the default CA certificate database with your own CA certificate
database using this function.
Each SSL socket's CA certificate database is initialized to the
default CA certificate database.
\sa addDefaultCaCertificate()
*/
void QSslSocket::setDefaultCaCertificates(const QList<QSslCertificate> &certificates)
{
QSslSocketPrivate::setDefaultCaCertificates(certificates);
}
/*!
Returns the current default CA certificate database. This database
is originally set to your system's default CA certificate database.
If no system default database is found, an empty database will be
returned. You can override the default CA certificate database
with your own CA certificate database using setDefaultCaCertificates().
Each SSL socket's CA certificate database is initialized to the
default CA certificate database.
\sa caCertificates()
*/
QList<QSslCertificate> QSslSocket::defaultCaCertificates()
{
return QSslSocketPrivate::defaultCaCertificates();
}
/*!
This function provides the CA certificate database
provided by the operating system. The CA certificate database
returned by this function is used to initialize the database
returned by defaultCaCertificates(). You can replace that database
with your own with setDefaultCaCertificates().
\sa caCertificates(), defaultCaCertificates(), setDefaultCaCertificates()
*/
QList<QSslCertificate> QSslSocket::systemCaCertificates()
{
// we are calling ensureInitialized() in the method below
return QSslSocketPrivate::systemCaCertificates();
}
/*!
Waits until the socket is connected, or \a msecs milliseconds,
whichever happens first. If the connection has been established,
this function returns true; otherwise it returns false.
\sa QAbstractSocket::waitForConnected()
*/
bool QSslSocket::waitForConnected(int msecs)
{
Q_D(QSslSocket);
if (!d->plainSocket)
return false;
bool retVal = d->plainSocket->waitForConnected(msecs);
if (!retVal) {
setSocketState(d->plainSocket->state());
setSocketError(d->plainSocket->error());
setErrorString(d->plainSocket->errorString());
}
return retVal;
}
/*!
Waits until the socket has completed the SSL handshake and has
emitted encrypted(), or \a msecs milliseconds, whichever comes
first. If encrypted() has been emitted, this function returns
true; otherwise (e.g., the socket is disconnected, or the SSL
handshake fails), false is returned.
The following example waits up to one second for the socket to be
encrypted:
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 5
If msecs is -1, this function will not time out.
\sa startClientEncryption(), startServerEncryption(), encrypted(), isEncrypted()
*/
bool QSslSocket::waitForEncrypted(int msecs)
{
Q_D(QSslSocket);
if (!d->plainSocket || d->connectionEncrypted)
return false;
if (d->mode == UnencryptedMode && !d->autoStartHandshake)
return false;
QElapsedTimer stopWatch;
stopWatch.start();
if (d->plainSocket->state() != QAbstractSocket::ConnectedState) {
// Wait until we've entered connected state.
if (!d->plainSocket->waitForConnected(msecs))
return false;
}
while (!d->connectionEncrypted) {
// Start the handshake, if this hasn't been started yet.
if (d->mode == UnencryptedMode)
startClientEncryption();
// Loop, waiting until the connection has been encrypted or an error
// occurs.
if (!d->plainSocket->waitForReadyRead(qt_timeout_value(msecs, stopWatch.elapsed())))
return false;
}
return d->connectionEncrypted;
}
/*!
\reimp
*/
bool QSslSocket::waitForReadyRead(int msecs)
{
Q_D(QSslSocket);
if (!d->plainSocket)
return false;
if (d->mode == UnencryptedMode && !d->autoStartHandshake)
return d->plainSocket->waitForReadyRead(msecs);
// This function must return true if and only if readyRead() *was* emitted.
// So we initialize "readyReadEmitted" to false and check if it was set to true.
// waitForReadyRead() could be called recursively, so we can't use the same variable
// (the inner waitForReadyRead() may fail, but the outer one still succeeded)
bool readyReadEmitted = false;
bool *previousReadyReadEmittedPointer = d->readyReadEmittedPointer;
d->readyReadEmittedPointer = &readyReadEmitted;
QElapsedTimer stopWatch;
stopWatch.start();
if (!d->connectionEncrypted) {
// Wait until we've entered encrypted mode, or until a failure occurs.
if (!waitForEncrypted(msecs)) {
d->readyReadEmittedPointer = previousReadyReadEmittedPointer;
return false;
}
}
if (!d->writeBuffer.isEmpty()) {
// empty our cleartext write buffer first
d->transmit();
}
// test readyReadEmitted first because either operation above
// (waitForEncrypted or transmit) may have set it
while (!readyReadEmitted &&
d->plainSocket->waitForReadyRead(qt_timeout_value(msecs, stopWatch.elapsed()))) {
}
d->readyReadEmittedPointer = previousReadyReadEmittedPointer;
return readyReadEmitted;
}
/*!
\reimp
*/
bool QSslSocket::waitForBytesWritten(int msecs)
{
Q_D(QSslSocket);
if (!d->plainSocket)
return false;
if (d->mode == UnencryptedMode)
return d->plainSocket->waitForBytesWritten(msecs);
QElapsedTimer stopWatch;
stopWatch.start();
if (!d->connectionEncrypted) {
// Wait until we've entered encrypted mode, or until a failure occurs.
if (!waitForEncrypted(msecs))
return false;
}
if (!d->writeBuffer.isEmpty()) {
// empty our cleartext write buffer first
d->transmit();
}
return d->plainSocket->waitForBytesWritten(qt_timeout_value(msecs, stopWatch.elapsed()));
}
/*!
Waits until the socket has disconnected or \a msecs milliseconds,
whichever comes first. If the connection has been disconnected,
this function returns true; otherwise it returns false.
\sa QAbstractSocket::waitForDisconnected()
*/
bool QSslSocket::waitForDisconnected(int msecs)
{
Q_D(QSslSocket);
// require calling connectToHost() before waitForDisconnected()
if (state() == UnconnectedState) {
qWarning("QSslSocket::waitForDisconnected() is not allowed in UnconnectedState");
return false;
}
if (!d->plainSocket)
return false;
if (d->mode == UnencryptedMode)
return d->plainSocket->waitForDisconnected(msecs);
QElapsedTimer stopWatch;
stopWatch.start();
if (!d->connectionEncrypted) {
// Wait until we've entered encrypted mode, or until a failure occurs.
if (!waitForEncrypted(msecs))
return false;
}
bool retVal = d->plainSocket->waitForDisconnected(qt_timeout_value(msecs, stopWatch.elapsed()));
if (!retVal) {
setSocketState(d->plainSocket->state());
setSocketError(d->plainSocket->error());
setErrorString(d->plainSocket->errorString());
}
return retVal;
}
/*!
Returns a list of the last SSL errors that occurred. This is the
same list as QSslSocket passes via the sslErrors() signal. If the
connection has been encrypted with no errors, this function will
return an empty list.
\sa connectToHostEncrypted()
*/
QList<QSslError> QSslSocket::sslErrors() const
{
Q_D(const QSslSocket);
return d->sslErrors;
}
/*!
Returns true if this platform supports SSL; otherwise, returns
false. If the platform doesn't support SSL, the socket will fail
in the connection phase.
*/
bool QSslSocket::supportsSsl()
{
return QSslSocketPrivate::supportsSsl();
}
/*!
Starts a delayed SSL handshake for a client connection. This
function can be called when the socket is in the \l ConnectedState
but still in the \l UnencryptedMode. If it is not yet connected,
or if it is already encrypted, this function has no effect.
Clients that implement STARTTLS functionality often make use of
delayed SSL handshakes. Most other clients can avoid calling this
function directly by using connectToHostEncrypted() instead, which
automatically performs the handshake.
\sa connectToHostEncrypted(), startServerEncryption()
*/
void QSslSocket::startClientEncryption()
{
Q_D(QSslSocket);
if (d->mode != UnencryptedMode) {
qWarning("QSslSocket::startClientEncryption: cannot start handshake on non-plain connection");
return;
}
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::startClientEncryption()";
#endif
d->mode = SslClientMode;
emit modeChanged(d->mode);
d->startClientEncryption();
}
/*!
Starts a delayed SSL handshake for a server connection. This
function can be called when the socket is in the \l ConnectedState
but still in \l UnencryptedMode. If it is not connected or it is
already encrypted, the function has no effect.
For server sockets, calling this function is the only way to
initiate the SSL handshake. Most servers will call this function
immediately upon receiving a connection, or as a result of having
received a protocol-specific command to enter SSL mode (e.g, the
server may respond to receiving the string "STARTTLS\r\n" by
calling this function).
The most common way to implement an SSL server is to create a
subclass of QTcpServer and reimplement
QTcpServer::incomingConnection(). The returned socket descriptor
is then passed to QSslSocket::setSocketDescriptor().
\sa connectToHostEncrypted(), startClientEncryption()
*/
void QSslSocket::startServerEncryption()
{
Q_D(QSslSocket);
if (d->mode != UnencryptedMode) {
qWarning("QSslSocket::startServerEncryption: cannot start handshake on non-plain connection");
return;
}
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::startServerEncryption()";
#endif
d->mode = SslServerMode;
emit modeChanged(d->mode);
d->startServerEncryption();
}
/*!
This slot tells QSslSocket to ignore errors during QSslSocket's
handshake phase and continue connecting. If you want to continue
with the connection even if errors occur during the handshake
phase, then you must call this slot, either from a slot connected
to sslErrors(), or before the handshake phase. If you don't call
this slot, either in response to errors or before the handshake,
the connection will be dropped after the sslErrors() signal has
been emitted.
If there are no errors during the SSL handshake phase (i.e., the
identity of the peer is established with no problems), QSslSocket
will not emit the sslErrors() signal, and it is unnecessary to
call this function.
Ignoring errors that occur during an SSL handshake should be done
with caution. A fundamental characteristic of secure connections
is that they should be established with an error free handshake.
\sa sslErrors()
*/
void QSslSocket::ignoreSslErrors()
{
Q_D(QSslSocket);
d->ignoreAllSslErrors = true;
}
/*!
\overload
\since 4.6
This method tells QSslSocket to ignore only the errors given in \a
errors.
Note that you can set the expected certificate in the SSL error:
If, for instance, you want to connect to a server that uses
a self-signed certificate, consider the following snippet:
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 6
Multiple calls to this function will replace the list of errors that
were passed in previous calls.
You can clear the list of errors you want to ignore by calling this
function with an empty list.
\sa sslErrors()
*/
void QSslSocket::ignoreSslErrors(const QList<QSslError> &errors)
{
Q_D(QSslSocket);
d->ignoreErrorsList = errors;
}
/*!
\internal
*/
void QSslSocket::connectToHostImplementation(const QString &hostName, quint16 port,
OpenMode openMode)
{
Q_D(QSslSocket);
if (!d->initialized)
d->init();
d->initialized = false;
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::connectToHostImplementation("
<< hostName << ',' << port << ',' << openMode << ')';
#endif
if (!d->plainSocket) {
#ifdef QSSLSOCKET_DEBUG
qDebug() << "\tcreating internal plain socket";
#endif
d->createPlainSocket(openMode);
}
#ifndef QT_NO_NETWORKPROXY
d->plainSocket->setProxy(proxy());
//copy user agent down to the plain socket (if it has been set)
d->plainSocket->setProperty("_q_user-agent", property("_q_user-agent"));
#endif
QIODevice::open(openMode);
d->plainSocket->connectToHost(hostName, port, openMode);
d->cachedSocketDescriptor = d->plainSocket->socketDescriptor();
}
/*!
\internal
*/
void QSslSocket::disconnectFromHostImplementation()
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::disconnectFromHostImplementation()";
#endif
if (!d->plainSocket)
return;
if (d->state == UnconnectedState)
return;
if (d->mode == UnencryptedMode && !d->autoStartHandshake) {
d->plainSocket->disconnectFromHost();
return;
}
if (d->state <= ConnectingState) {
d->pendingClose = true;
return;
}
// Perhaps emit closing()
if (d->state != ClosingState) {
d->state = ClosingState;
emit stateChanged(d->state);
}
if (!d->writeBuffer.isEmpty())
return;
if (d->mode == UnencryptedMode) {
d->plainSocket->disconnectFromHost();
} else {
d->disconnectFromHost();
}
}
/*!
\reimp
*/
qint64 QSslSocket::readData(char *data, qint64 maxlen)
{
Q_D(QSslSocket);
qint64 readBytes = 0;
if (d->mode == UnencryptedMode && !d->autoStartHandshake) {
readBytes = d->plainSocket->read(data, maxlen);
} else {
do {
const char *readPtr = d->readBuffer.readPointer();
int bytesToRead = qMin<int>(maxlen - readBytes, d->readBuffer.nextDataBlockSize());
::memcpy(data + readBytes, readPtr, bytesToRead);
readBytes += bytesToRead;
d->readBuffer.free(bytesToRead);
} while (!d->readBuffer.isEmpty() && readBytes < maxlen);
}
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::readData(" << (void *)data << ',' << maxlen << ") ==" << readBytes;
#endif
// possibly trigger another transmit() to decrypt more data from the socket
if (d->readBuffer.isEmpty() && d->plainSocket->bytesAvailable())
QMetaObject::invokeMethod(this, "_q_flushReadBuffer", Qt::QueuedConnection);
return readBytes;
}
/*!
\reimp
*/
qint64 QSslSocket::writeData(const char *data, qint64 len)
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::writeData(" << (void *)data << ',' << len << ')';
#endif
if (d->mode == UnencryptedMode && !d->autoStartHandshake)
return d->plainSocket->write(data, len);
char *writePtr = d->writeBuffer.reserve(len);
::memcpy(writePtr, data, len);
// make sure we flush to the plain socket's buffer
QMetaObject::invokeMethod(this, "_q_flushWriteBuffer", Qt::QueuedConnection);
return len;
}
/*!
\internal
*/
QSslSocketPrivate::QSslSocketPrivate()
: initialized(false)
, mode(QSslSocket::UnencryptedMode)
, autoStartHandshake(false)
, connectionEncrypted(false)
, ignoreAllSslErrors(false)
, readyReadEmittedPointer(0)
, plainSocket(0)
{
QSslConfigurationPrivate::deepCopyDefaultConfiguration(&configuration);
}
/*!
\internal
*/
QSslSocketPrivate::~QSslSocketPrivate()
{
}
/*!
\internal
*/
void QSslSocketPrivate::init()
{
mode = QSslSocket::UnencryptedMode;
autoStartHandshake = false;
connectionEncrypted = false;
ignoreAllSslErrors = false;
// we don't want to clear the ignoreErrorsList, so
// that it is possible setting it before connecting
// ignoreErrorsList.clear();
readBuffer.clear();
writeBuffer.clear();
configuration.peerCertificate.clear();
configuration.peerCertificateChain.clear();
}
/*!
\internal
*/
QList<QSslCipher> QSslSocketPrivate::defaultCiphers()
{
QMutexLocker locker(&globalData()->mutex);
return globalData()->config->ciphers;
}
/*!
\internal
*/
QList<QSslCipher> QSslSocketPrivate::supportedCiphers()
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
return globalData()->supportedCiphers;
}
/*!
\internal
*/
void QSslSocketPrivate::setDefaultCiphers(const QList<QSslCipher> &ciphers)
{
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->ciphers = ciphers;
}
/*!
\internal
*/
void QSslSocketPrivate::setDefaultSupportedCiphers(const QList<QSslCipher> &ciphers)
{
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->supportedCiphers = ciphers;
}
/*!
\internal
*/
QList<QSslCertificate> QSslSocketPrivate::defaultCaCertificates()
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
return globalData()->config->caCertificates;
}
/*!
\internal
*/
void QSslSocketPrivate::setDefaultCaCertificates(const QList<QSslCertificate> &certs)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->caCertificates = certs;
}
/*!
\internal
*/
bool QSslSocketPrivate::addDefaultCaCertificates(const QString &path, QSsl::EncodingFormat format,
QRegExp::PatternSyntax syntax)
{
QSslSocketPrivate::ensureInitialized();
QList<QSslCertificate> certs = QSslCertificate::fromPath(path, format, syntax);
if (certs.isEmpty())
return false;
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->caCertificates += certs;
return true;
}
/*!
\internal
*/
void QSslSocketPrivate::addDefaultCaCertificate(const QSslCertificate &cert)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->caCertificates += cert;
}
/*!
\internal
*/
void QSslSocketPrivate::addDefaultCaCertificates(const QList<QSslCertificate> &certs)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->caCertificates += certs;
}
/*!
\internal
*/
QSslConfiguration QSslConfigurationPrivate::defaultConfiguration()
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
return QSslConfiguration(globalData()->config.data());
}
/*!
\internal
*/
void QSslConfigurationPrivate::setDefaultConfiguration(const QSslConfiguration &configuration)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
if (globalData()->config == configuration.d)
return; // nothing to do
globalData()->config = const_cast<QSslConfigurationPrivate*>(configuration.d.constData());
}
/*!
\internal
*/
void QSslConfigurationPrivate::deepCopyDefaultConfiguration(QSslConfigurationPrivate *ptr)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
const QSslConfigurationPrivate *global = globalData()->config.constData();
if (!global) {
ptr = 0;
return;
}
ptr->ref = 1;
ptr->peerCertificate = global->peerCertificate;
ptr->peerCertificateChain = global->peerCertificateChain;
ptr->localCertificate = global->localCertificate;
ptr->privateKey = global->privateKey;
ptr->sessionCipher = global->sessionCipher;
ptr->ciphers = global->ciphers;
ptr->caCertificates = global->caCertificates;
ptr->protocol = global->protocol;
ptr->peerVerifyMode = global->peerVerifyMode;
ptr->peerVerifyDepth = global->peerVerifyDepth;
}
/*!
\internal
*/
void QSslSocketPrivate::createPlainSocket(QIODevice::OpenMode openMode)
{
Q_Q(QSslSocket);
q->setOpenMode(openMode); // <- from QIODevice
q->setSocketState(QAbstractSocket::UnconnectedState);
q->setSocketError(QAbstractSocket::UnknownSocketError);
q->setLocalPort(0);
q->setLocalAddress(QHostAddress());
q->setPeerPort(0);
q->setPeerAddress(QHostAddress());
q->setPeerName(QString());
plainSocket = new QTcpSocket(q);
q->connect(plainSocket, SIGNAL(connected()),
q, SLOT(_q_connectedSlot()),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(hostFound()),
q, SLOT(_q_hostFoundSlot()),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(disconnected()),
q, SLOT(_q_disconnectedSlot()),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(stateChanged(QAbstractSocket::SocketState)),
q, SLOT(_q_stateChangedSlot(QAbstractSocket::SocketState)),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(error(QAbstractSocket::SocketError)),
q, SLOT(_q_errorSlot(QAbstractSocket::SocketError)),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(readyRead()),
q, SLOT(_q_readyReadSlot()),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(bytesWritten(qint64)),
q, SLOT(_q_bytesWrittenSlot(qint64)),
Qt::DirectConnection);
#ifndef QT_NO_NETWORKPROXY
q->connect(plainSocket, SIGNAL(proxyAuthenticationRequired(QNetworkProxy,QAuthenticator*)),
q, SIGNAL(proxyAuthenticationRequired(QNetworkProxy,QAuthenticator*)));
#endif
readBuffer.clear();
writeBuffer.clear();
connectionEncrypted = false;
configuration.peerCertificate.clear();
configuration.peerCertificateChain.clear();
mode = QSslSocket::UnencryptedMode;
q->setReadBufferSize(readBufferMaxSize);
}
void QSslSocketPrivate::pauseSocketNotifiers(QSslSocket *socket)
{
if (!socket->d_func()->plainSocket)
return;
QAbstractSocketPrivate::pauseSocketNotifiers(socket->d_func()->plainSocket);
}
void QSslSocketPrivate::resumeSocketNotifiers(QSslSocket *socket)
{
if (!socket->d_func()->plainSocket)
return;
QAbstractSocketPrivate::resumeSocketNotifiers(socket->d_func()->plainSocket);
}
/*!
\internal
*/
void QSslSocketPrivate::_q_connectedSlot()
{
Q_Q(QSslSocket);
q->setLocalPort(plainSocket->localPort());
q->setLocalAddress(plainSocket->localAddress());
q->setPeerPort(plainSocket->peerPort());
q->setPeerAddress(plainSocket->peerAddress());
q->setPeerName(plainSocket->peerName());
cachedSocketDescriptor = plainSocket->socketDescriptor();
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_connectedSlot()";
qDebug() << "\tstate =" << q->state();
qDebug() << "\tpeer =" << q->peerName() << q->peerAddress() << q->peerPort();
qDebug() << "\tlocal =" << QHostInfo::fromName(q->localAddress().toString()).hostName()
<< q->localAddress() << q->localPort();
#endif
emit q->connected();
if (autoStartHandshake) {
q->startClientEncryption();
} else if (pendingClose) {
pendingClose = false;
q->disconnectFromHost();
}
}
/*!
\internal
*/
void QSslSocketPrivate::_q_hostFoundSlot()
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_hostFoundSlot()";
qDebug() << "\tstate =" << q->state();
#endif
emit q->hostFound();
}
/*!
\internal
*/
void QSslSocketPrivate::_q_disconnectedSlot()
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_disconnectedSlot()";
qDebug() << "\tstate =" << q->state();
#endif
disconnected();
emit q->disconnected();
}
/*!
\internal
*/
void QSslSocketPrivate::_q_stateChangedSlot(QAbstractSocket::SocketState state)
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_stateChangedSlot(" << state << ')';
#endif
q->setSocketState(state);
emit q->stateChanged(state);
}
/*!
\internal
*/
void QSslSocketPrivate::_q_errorSlot(QAbstractSocket::SocketError error)
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_errorSlot(" << error << ')';
qDebug() << "\tstate =" << q->state();
qDebug() << "\terrorString =" << q->errorString();
#endif
q->setSocketError(plainSocket->error());
q->setErrorString(plainSocket->errorString());
emit q->error(error);
}
/*!
\internal
*/
void QSslSocketPrivate::_q_readyReadSlot()
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_readyReadSlot() -" << plainSocket->bytesAvailable() << "bytes available";
#endif
if (mode == QSslSocket::UnencryptedMode) {
if (readyReadEmittedPointer)
*readyReadEmittedPointer = true;
emit q->readyRead();
return;
}
transmit();
}
/*!
\internal
*/
void QSslSocketPrivate::_q_bytesWrittenSlot(qint64 written)
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_bytesWrittenSlot(" << written << ')';
#endif
if (mode == QSslSocket::UnencryptedMode)
emit q->bytesWritten(written);
else
emit q->encryptedBytesWritten(written);
if (state == QAbstractSocket::ClosingState && writeBuffer.isEmpty())
q->disconnectFromHost();
}
/*!
\internal
*/
void QSslSocketPrivate::_q_flushWriteBuffer()
{
Q_Q(QSslSocket);
if (!writeBuffer.isEmpty())
q->flush();
}
/*!
\internal
*/
void QSslSocketPrivate::_q_flushReadBuffer()
{
// trigger a read from the plainSocket into SSL
if (mode != QSslSocket::UnencryptedMode)
transmit();
}
QT_END_NAMESPACE
// For private slots
#define d d_ptr
#include "moc_qsslsocket.cpp"