blob: 0eca610593fce50025d67a42fbabf635648d5106 [file] [log] [blame]
/*
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2007 Eric Seidel <eric@webkit.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "Collector.h"
#include "ArgList.h"
#include "CallFrame.h"
#include "CodeBlock.h"
#include "CollectorHeapIterator.h"
#include "Interpreter.h"
#include "JSArray.h"
#include "JSGlobalObject.h"
#include "JSLock.h"
#include "JSONObject.h"
#include "JSString.h"
#include "JSValue.h"
#include "JSZombie.h"
#include "MarkStack.h"
#include "Nodes.h"
#include "Tracing.h"
#include <algorithm>
#include <limits.h>
#include <setjmp.h>
#include <stdlib.h>
#include <wtf/FastMalloc.h>
#include <wtf/HashCountedSet.h>
#include <wtf/UnusedParam.h>
#include <wtf/VMTags.h>
#if OS(DARWIN)
#include <mach/mach_init.h>
#include <mach/mach_port.h>
#include <mach/task.h>
#include <mach/thread_act.h>
#include <mach/vm_map.h>
#elif OS(WINDOWS)
#include <windows.h>
#include <malloc.h>
#elif OS(HAIKU)
#include <OS.h>
#elif OS(UNIX)
#include <stdlib.h>
#if !OS(HAIKU)
#include <sys/mman.h>
#endif
#include <unistd.h>
#if OS(SOLARIS)
#include <thread.h>
#else
#include <pthread.h>
#endif
#if HAVE(PTHREAD_NP_H)
#include <pthread_np.h>
#endif
#if OS(QNX)
#include <fcntl.h>
#include <sys/procfs.h>
#include <stdio.h>
#include <errno.h>
#endif
#endif
#define COLLECT_ON_EVERY_ALLOCATION 0
using std::max;
namespace JSC {
// tunable parameters
const size_t GROWTH_FACTOR = 2;
const size_t LOW_WATER_FACTOR = 4;
const size_t ALLOCATIONS_PER_COLLECTION = 3600;
// This value has to be a macro to be used in max() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define MIN_ARRAY_SIZE (static_cast<size_t>(14))
#if ENABLE(JSC_MULTIPLE_THREADS)
#if OS(DARWIN)
typedef mach_port_t PlatformThread;
#elif OS(WINDOWS)
typedef HANDLE PlatformThread;
#endif
class Heap::Thread {
public:
Thread(pthread_t pthread, const PlatformThread& platThread, void* base)
: posixThread(pthread)
, platformThread(platThread)
, stackBase(base)
{
}
Thread* next;
pthread_t posixThread;
PlatformThread platformThread;
void* stackBase;
};
#endif
Heap::Heap(JSGlobalData* globalData)
: m_markListSet(0)
#if ENABLE(JSC_MULTIPLE_THREADS)
, m_registeredThreads(0)
, m_currentThreadRegistrar(0)
#endif
, m_globalData(globalData)
#if OS(SYMBIAN)
, m_blockallocator(JSCCOLLECTOR_VIRTUALMEM_RESERVATION, BLOCK_SIZE)
#endif
{
ASSERT(globalData);
memset(&m_heap, 0, sizeof(CollectorHeap));
allocateBlock();
}
Heap::~Heap()
{
// The destroy function must already have been called, so assert this.
ASSERT(!m_globalData);
}
void Heap::destroy()
{
JSLock lock(SilenceAssertionsOnly);
if (!m_globalData)
return;
ASSERT(!m_globalData->dynamicGlobalObject);
ASSERT(!isBusy());
// The global object is not GC protected at this point, so sweeping may delete it
// (and thus the global data) before other objects that may use the global data.
RefPtr<JSGlobalData> protect(m_globalData);
delete m_markListSet;
m_markListSet = 0;
freeBlocks();
#if ENABLE(JSC_MULTIPLE_THREADS)
if (m_currentThreadRegistrar) {
int error = pthread_key_delete(m_currentThreadRegistrar);
ASSERT_UNUSED(error, !error);
}
MutexLocker registeredThreadsLock(m_registeredThreadsMutex);
for (Heap::Thread* t = m_registeredThreads; t;) {
Heap::Thread* next = t->next;
delete t;
t = next;
}
#endif
#if OS(SYMBIAN)
m_blockallocator.destroy();
#endif
m_globalData = 0;
}
NEVER_INLINE CollectorBlock* Heap::allocateBlock()
{
#if OS(DARWIN)
vm_address_t address = 0;
vm_map(current_task(), &address, BLOCK_SIZE, BLOCK_OFFSET_MASK, VM_FLAGS_ANYWHERE | VM_TAG_FOR_COLLECTOR_MEMORY, MEMORY_OBJECT_NULL, 0, FALSE, VM_PROT_DEFAULT, VM_PROT_DEFAULT, VM_INHERIT_DEFAULT);
#elif OS(SYMBIAN)
void* address = m_blockallocator.alloc();
if (!address)
CRASH();
#elif OS(WINCE)
void* address = VirtualAlloc(NULL, BLOCK_SIZE, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#elif OS(WINDOWS)
#if COMPILER(MINGW) && !COMPILER(MINGW64)
void* address = __mingw_aligned_malloc(BLOCK_SIZE, BLOCK_SIZE);
#else
void* address = _aligned_malloc(BLOCK_SIZE, BLOCK_SIZE);
#endif
memset(address, 0, BLOCK_SIZE);
#elif HAVE(POSIX_MEMALIGN)
void* address;
posix_memalign(&address, BLOCK_SIZE, BLOCK_SIZE);
#else
#if ENABLE(JSC_MULTIPLE_THREADS)
#error Need to initialize pagesize safely.
#endif
static size_t pagesize = getpagesize();
size_t extra = 0;
if (BLOCK_SIZE > pagesize)
extra = BLOCK_SIZE - pagesize;
void* mmapResult = mmap(NULL, BLOCK_SIZE + extra, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
uintptr_t address = reinterpret_cast<uintptr_t>(mmapResult);
size_t adjust = 0;
if ((address & BLOCK_OFFSET_MASK) != 0)
adjust = BLOCK_SIZE - (address & BLOCK_OFFSET_MASK);
if (adjust > 0)
munmap(reinterpret_cast<char*>(address), adjust);
if (adjust < extra)
munmap(reinterpret_cast<char*>(address + adjust + BLOCK_SIZE), extra - adjust);
address += adjust;
#endif
// Initialize block.
CollectorBlock* block = reinterpret_cast<CollectorBlock*>(address);
block->heap = this;
clearMarkBits(block);
Structure* dummyMarkableCellStructure = m_globalData->dummyMarkableCellStructure.get();
for (size_t i = 0; i < HeapConstants::cellsPerBlock; ++i)
new (block->cells + i) JSCell(dummyMarkableCellStructure);
// Add block to blocks vector.
size_t numBlocks = m_heap.numBlocks;
if (m_heap.usedBlocks == numBlocks) {
static const size_t maxNumBlocks = ULONG_MAX / sizeof(CollectorBlock*) / GROWTH_FACTOR;
if (numBlocks > maxNumBlocks)
CRASH();
numBlocks = max(MIN_ARRAY_SIZE, numBlocks * GROWTH_FACTOR);
m_heap.numBlocks = numBlocks;
m_heap.blocks = static_cast<CollectorBlock**>(fastRealloc(m_heap.blocks, numBlocks * sizeof(CollectorBlock*)));
}
m_heap.blocks[m_heap.usedBlocks++] = block;
return block;
}
NEVER_INLINE void Heap::freeBlock(size_t block)
{
m_heap.didShrink = true;
ObjectIterator it(m_heap, block);
ObjectIterator end(m_heap, block + 1);
for ( ; it != end; ++it)
(*it)->~JSCell();
freeBlockPtr(m_heap.blocks[block]);
// swap with the last block so we compact as we go
m_heap.blocks[block] = m_heap.blocks[m_heap.usedBlocks - 1];
m_heap.usedBlocks--;
if (m_heap.numBlocks > MIN_ARRAY_SIZE && m_heap.usedBlocks < m_heap.numBlocks / LOW_WATER_FACTOR) {
m_heap.numBlocks = m_heap.numBlocks / GROWTH_FACTOR;
m_heap.blocks = static_cast<CollectorBlock**>(fastRealloc(m_heap.blocks, m_heap.numBlocks * sizeof(CollectorBlock*)));
}
}
NEVER_INLINE void Heap::freeBlockPtr(CollectorBlock* block)
{
#if OS(DARWIN)
vm_deallocate(current_task(), reinterpret_cast<vm_address_t>(block), BLOCK_SIZE);
#elif OS(SYMBIAN)
m_blockallocator.free(reinterpret_cast<void*>(block));
#elif OS(WINCE)
VirtualFree(block, 0, MEM_RELEASE);
#elif OS(WINDOWS)
#if COMPILER(MINGW) && !COMPILER(MINGW64)
__mingw_aligned_free(block);
#else
_aligned_free(block);
#endif
#elif HAVE(POSIX_MEMALIGN)
free(block);
#else
munmap(reinterpret_cast<char*>(block), BLOCK_SIZE);
#endif
}
void Heap::freeBlocks()
{
ProtectCountSet protectedValuesCopy = m_protectedValues;
clearMarkBits();
ProtectCountSet::iterator protectedValuesEnd = protectedValuesCopy.end();
for (ProtectCountSet::iterator it = protectedValuesCopy.begin(); it != protectedValuesEnd; ++it)
markCell(it->first);
m_heap.nextCell = 0;
m_heap.nextBlock = 0;
DeadObjectIterator it(m_heap, m_heap.nextBlock, m_heap.nextCell);
DeadObjectIterator end(m_heap, m_heap.usedBlocks);
for ( ; it != end; ++it)
(*it)->~JSCell();
ASSERT(!protectedObjectCount());
protectedValuesEnd = protectedValuesCopy.end();
for (ProtectCountSet::iterator it = protectedValuesCopy.begin(); it != protectedValuesEnd; ++it)
it->first->~JSCell();
for (size_t block = 0; block < m_heap.usedBlocks; ++block)
freeBlockPtr(m_heap.blocks[block]);
fastFree(m_heap.blocks);
memset(&m_heap, 0, sizeof(CollectorHeap));
}
void Heap::recordExtraCost(size_t cost)
{
// Our frequency of garbage collection tries to balance memory use against speed
// by collecting based on the number of newly created values. However, for values
// that hold on to a great deal of memory that's not in the form of other JS values,
// that is not good enough - in some cases a lot of those objects can pile up and
// use crazy amounts of memory without a GC happening. So we track these extra
// memory costs. Only unusually large objects are noted, and we only keep track
// of this extra cost until the next GC. In garbage collected languages, most values
// are either very short lived temporaries, or have extremely long lifetimes. So
// if a large value survives one garbage collection, there is not much point to
// collecting more frequently as long as it stays alive.
if (m_heap.extraCost > maxExtraCost && m_heap.extraCost > m_heap.usedBlocks * BLOCK_SIZE / 2) {
// If the last iteration through the heap deallocated blocks, we need
// to clean up remaining garbage before marking. Otherwise, the conservative
// marking mechanism might follow a pointer to unmapped memory.
if (m_heap.didShrink)
sweep();
reset();
}
m_heap.extraCost += cost;
}
void* Heap::allocate(size_t s)
{
typedef HeapConstants::Block Block;
typedef HeapConstants::Cell Cell;
ASSERT(JSLock::lockCount() > 0);
ASSERT(JSLock::currentThreadIsHoldingLock());
ASSERT_UNUSED(s, s <= HeapConstants::cellSize);
ASSERT(m_heap.operationInProgress == NoOperation);
#if COLLECT_ON_EVERY_ALLOCATION
collectAllGarbage();
ASSERT(m_heap.operationInProgress == NoOperation);
#endif
allocate:
// Fast case: find the next garbage cell and recycle it.
do {
ASSERT(m_heap.nextBlock < m_heap.usedBlocks);
Block* block = reinterpret_cast<Block*>(m_heap.blocks[m_heap.nextBlock]);
do {
ASSERT(m_heap.nextCell < HeapConstants::cellsPerBlock);
if (!block->marked.get(m_heap.nextCell)) { // Always false for the last cell in the block
Cell* cell = block->cells + m_heap.nextCell;
m_heap.operationInProgress = Allocation;
JSCell* imp = reinterpret_cast<JSCell*>(cell);
imp->~JSCell();
m_heap.operationInProgress = NoOperation;
++m_heap.nextCell;
return cell;
}
} while (++m_heap.nextCell != HeapConstants::cellsPerBlock);
m_heap.nextCell = 0;
} while (++m_heap.nextBlock != m_heap.usedBlocks);
// Slow case: reached the end of the heap. Mark live objects and start over.
reset();
goto allocate;
}
void Heap::resizeBlocks()
{
m_heap.didShrink = false;
size_t usedCellCount = markedCells();
size_t minCellCount = usedCellCount + max(ALLOCATIONS_PER_COLLECTION, usedCellCount);
size_t minBlockCount = (minCellCount + HeapConstants::cellsPerBlock - 1) / HeapConstants::cellsPerBlock;
size_t maxCellCount = 1.25f * minCellCount;
size_t maxBlockCount = (maxCellCount + HeapConstants::cellsPerBlock - 1) / HeapConstants::cellsPerBlock;
if (m_heap.usedBlocks < minBlockCount)
growBlocks(minBlockCount);
else if (m_heap.usedBlocks > maxBlockCount)
shrinkBlocks(maxBlockCount);
}
void Heap::growBlocks(size_t neededBlocks)
{
ASSERT(m_heap.usedBlocks < neededBlocks);
while (m_heap.usedBlocks < neededBlocks)
allocateBlock();
}
void Heap::shrinkBlocks(size_t neededBlocks)
{
ASSERT(m_heap.usedBlocks > neededBlocks);
// Clear the always-on last bit, so isEmpty() isn't fooled by it.
for (size_t i = 0; i < m_heap.usedBlocks; ++i)
m_heap.blocks[i]->marked.clear(HeapConstants::cellsPerBlock - 1);
for (size_t i = 0; i != m_heap.usedBlocks && m_heap.usedBlocks != neededBlocks; ) {
if (m_heap.blocks[i]->marked.isEmpty()) {
freeBlock(i);
} else
++i;
}
// Reset the always-on last bit.
for (size_t i = 0; i < m_heap.usedBlocks; ++i)
m_heap.blocks[i]->marked.set(HeapConstants::cellsPerBlock - 1);
}
#if OS(WINCE)
void* g_stackBase = 0;
inline bool isPageWritable(void* page)
{
MEMORY_BASIC_INFORMATION memoryInformation;
DWORD result = VirtualQuery(page, &memoryInformation, sizeof(memoryInformation));
// return false on error, including ptr outside memory
if (result != sizeof(memoryInformation))
return false;
DWORD protect = memoryInformation.Protect & ~(PAGE_GUARD | PAGE_NOCACHE);
return protect == PAGE_READWRITE
|| protect == PAGE_WRITECOPY
|| protect == PAGE_EXECUTE_READWRITE
|| protect == PAGE_EXECUTE_WRITECOPY;
}
static void* getStackBase(void* previousFrame)
{
// find the address of this stack frame by taking the address of a local variable
bool isGrowingDownward;
void* thisFrame = (void*)(&isGrowingDownward);
isGrowingDownward = previousFrame < &thisFrame;
static DWORD pageSize = 0;
if (!pageSize) {
SYSTEM_INFO systemInfo;
GetSystemInfo(&systemInfo);
pageSize = systemInfo.dwPageSize;
}
// scan all of memory starting from this frame, and return the last writeable page found
register char* currentPage = (char*)((DWORD)thisFrame & ~(pageSize - 1));
if (isGrowingDownward) {
while (currentPage > 0) {
// check for underflow
if (currentPage >= (char*)pageSize)
currentPage -= pageSize;
else
currentPage = 0;
if (!isPageWritable(currentPage))
return currentPage + pageSize;
}
return 0;
} else {
while (true) {
// guaranteed to complete because isPageWritable returns false at end of memory
currentPage += pageSize;
if (!isPageWritable(currentPage))
return currentPage;
}
}
}
#endif
#if OS(QNX)
static inline void *currentThreadStackBaseQNX()
{
static void* stackBase = 0;
static size_t stackSize = 0;
static pthread_t stackThread;
pthread_t thread = pthread_self();
if (stackBase == 0 || thread != stackThread) {
struct _debug_thread_info threadInfo;
memset(&threadInfo, 0, sizeof(threadInfo));
threadInfo.tid = pthread_self();
int fd = open("/proc/self", O_RDONLY);
if (fd == -1) {
LOG_ERROR("Unable to open /proc/self (errno: %d)", errno);
return 0;
}
devctl(fd, DCMD_PROC_TIDSTATUS, &threadInfo, sizeof(threadInfo), 0);
close(fd);
stackBase = reinterpret_cast<void*>(threadInfo.stkbase);
stackSize = threadInfo.stksize;
ASSERT(stackBase);
stackThread = thread;
}
return static_cast<char*>(stackBase) + stackSize;
}
#endif
static inline void* currentThreadStackBase()
{
#if OS(DARWIN)
pthread_t thread = pthread_self();
return pthread_get_stackaddr_np(thread);
#elif OS(WINDOWS) && CPU(X86) && COMPILER(MSVC)
// offset 0x18 from the FS segment register gives a pointer to
// the thread information block for the current thread
NT_TIB* pTib;
__asm {
MOV EAX, FS:[18h]
MOV pTib, EAX
}
return static_cast<void*>(pTib->StackBase);
#elif OS(WINDOWS) && CPU(X86) && COMPILER(GCC)
// offset 0x18 from the FS segment register gives a pointer to
// the thread information block for the current thread
NT_TIB* pTib;
asm ( "movl %%fs:0x18, %0\n"
: "=r" (pTib)
);
return static_cast<void*>(pTib->StackBase);
#elif OS(WINDOWS) && CPU(X86_64)
PNT_TIB64 pTib = reinterpret_cast<PNT_TIB64>(NtCurrentTeb());
return reinterpret_cast<void*>(pTib->StackBase);
#elif OS(QNX)
AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);
MutexLocker locker(mutex);
return currentThreadStackBaseQNX();
#elif OS(SOLARIS)
stack_t s;
thr_stksegment(&s);
return s.ss_sp;
#elif OS(OPENBSD)
pthread_t thread = pthread_self();
stack_t stack;
pthread_stackseg_np(thread, &stack);
return stack.ss_sp;
#elif OS(SYMBIAN)
TThreadStackInfo info;
RThread thread;
thread.StackInfo(info);
return (void*)info.iBase;
#elif OS(HAIKU)
thread_info threadInfo;
get_thread_info(find_thread(NULL), &threadInfo);
return threadInfo.stack_end;
#elif OS(UNIX)
AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);
MutexLocker locker(mutex);
static void* stackBase = 0;
static size_t stackSize = 0;
static pthread_t stackThread;
pthread_t thread = pthread_self();
if (stackBase == 0 || thread != stackThread) {
pthread_attr_t sattr;
pthread_attr_init(&sattr);
#if HAVE(PTHREAD_NP_H) || OS(NETBSD)
// e.g. on FreeBSD 5.4, neundorf@kde.org
pthread_attr_get_np(thread, &sattr);
#else
// FIXME: this function is non-portable; other POSIX systems may have different np alternatives
pthread_getattr_np(thread, &sattr);
#endif
int rc = pthread_attr_getstack(&sattr, &stackBase, &stackSize);
(void)rc; // FIXME: Deal with error code somehow? Seems fatal.
ASSERT(stackBase);
pthread_attr_destroy(&sattr);
stackThread = thread;
}
return static_cast<char*>(stackBase) + stackSize;
#elif OS(WINCE)
AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);
MutexLocker locker(mutex);
if (g_stackBase)
return g_stackBase;
else {
int dummy;
return getStackBase(&dummy);
}
#else
#error Need a way to get the stack base on this platform
#endif
}
#if ENABLE(JSC_MULTIPLE_THREADS)
static inline PlatformThread getCurrentPlatformThread()
{
#if OS(DARWIN)
return pthread_mach_thread_np(pthread_self());
#elif OS(WINDOWS)
return pthread_getw32threadhandle_np(pthread_self());
#endif
}
void Heap::makeUsableFromMultipleThreads()
{
if (m_currentThreadRegistrar)
return;
int error = pthread_key_create(&m_currentThreadRegistrar, unregisterThread);
if (error)
CRASH();
}
void Heap::registerThread()
{
ASSERT(!m_globalData->mainThreadOnly || isMainThread());
if (!m_currentThreadRegistrar || pthread_getspecific(m_currentThreadRegistrar))
return;
pthread_setspecific(m_currentThreadRegistrar, this);
Heap::Thread* thread = new Heap::Thread(pthread_self(), getCurrentPlatformThread(), currentThreadStackBase());
MutexLocker lock(m_registeredThreadsMutex);
thread->next = m_registeredThreads;
m_registeredThreads = thread;
}
void Heap::unregisterThread(void* p)
{
if (p)
static_cast<Heap*>(p)->unregisterThread();
}
void Heap::unregisterThread()
{
pthread_t currentPosixThread = pthread_self();
MutexLocker lock(m_registeredThreadsMutex);
if (pthread_equal(currentPosixThread, m_registeredThreads->posixThread)) {
Thread* t = m_registeredThreads;
m_registeredThreads = m_registeredThreads->next;
delete t;
} else {
Heap::Thread* last = m_registeredThreads;
Heap::Thread* t;
for (t = m_registeredThreads->next; t; t = t->next) {
if (pthread_equal(t->posixThread, currentPosixThread)) {
last->next = t->next;
break;
}
last = t;
}
ASSERT(t); // If t is NULL, we never found ourselves in the list.
delete t;
}
}
#else // ENABLE(JSC_MULTIPLE_THREADS)
void Heap::registerThread()
{
}
#endif
inline bool isPointerAligned(void* p)
{
return (((intptr_t)(p) & (sizeof(char*) - 1)) == 0);
}
// Cell size needs to be a power of two for isPossibleCell to be valid.
COMPILE_ASSERT(sizeof(CollectorCell) % 2 == 0, Collector_cell_size_is_power_of_two);
#if USE(JSVALUE32)
static bool isHalfCellAligned(void *p)
{
return (((intptr_t)(p) & (CELL_MASK >> 1)) == 0);
}
static inline bool isPossibleCell(void* p)
{
return isHalfCellAligned(p) && p;
}
#else
static inline bool isCellAligned(void *p)
{
return (((intptr_t)(p) & CELL_MASK) == 0);
}
static inline bool isPossibleCell(void* p)
{
return isCellAligned(p) && p;
}
#endif // USE(JSVALUE32)
void Heap::markConservatively(MarkStack& markStack, void* start, void* end)
{
if (start > end) {
void* tmp = start;
start = end;
end = tmp;
}
ASSERT((static_cast<char*>(end) - static_cast<char*>(start)) < 0x1000000);
ASSERT(isPointerAligned(start));
ASSERT(isPointerAligned(end));
char** p = static_cast<char**>(start);
char** e = static_cast<char**>(end);
CollectorBlock** blocks = m_heap.blocks;
while (p != e) {
char* x = *p++;
if (isPossibleCell(x)) {
size_t usedBlocks;
uintptr_t xAsBits = reinterpret_cast<uintptr_t>(x);
xAsBits &= CELL_ALIGN_MASK;
uintptr_t offset = xAsBits & BLOCK_OFFSET_MASK;
const size_t lastCellOffset = sizeof(CollectorCell) * (CELLS_PER_BLOCK - 1);
if (offset > lastCellOffset)
continue;
CollectorBlock* blockAddr = reinterpret_cast<CollectorBlock*>(xAsBits - offset);
usedBlocks = m_heap.usedBlocks;
for (size_t block = 0; block < usedBlocks; block++) {
if (blocks[block] != blockAddr)
continue;
markStack.append(reinterpret_cast<JSCell*>(xAsBits));
markStack.drain();
}
}
}
}
void NEVER_INLINE Heap::markCurrentThreadConservativelyInternal(MarkStack& markStack)
{
void* dummy;
void* stackPointer = &dummy;
void* stackBase = currentThreadStackBase();
markConservatively(markStack, stackPointer, stackBase);
}
#if COMPILER(GCC)
#define REGISTER_BUFFER_ALIGNMENT __attribute__ ((aligned (sizeof(void*))))
#else
#define REGISTER_BUFFER_ALIGNMENT
#endif
void Heap::markCurrentThreadConservatively(MarkStack& markStack)
{
// setjmp forces volatile registers onto the stack
jmp_buf registers REGISTER_BUFFER_ALIGNMENT;
#if COMPILER(MSVC)
#pragma warning(push)
#pragma warning(disable: 4611)
#endif
setjmp(registers);
#if COMPILER(MSVC)
#pragma warning(pop)
#endif
markCurrentThreadConservativelyInternal(markStack);
}
#if ENABLE(JSC_MULTIPLE_THREADS)
static inline void suspendThread(const PlatformThread& platformThread)
{
#if OS(DARWIN)
thread_suspend(platformThread);
#elif OS(WINDOWS)
SuspendThread(platformThread);
#else
#error Need a way to suspend threads on this platform
#endif
}
static inline void resumeThread(const PlatformThread& platformThread)
{
#if OS(DARWIN)
thread_resume(platformThread);
#elif OS(WINDOWS)
ResumeThread(platformThread);
#else
#error Need a way to resume threads on this platform
#endif
}
typedef unsigned long usword_t; // word size, assumed to be either 32 or 64 bit
#if OS(DARWIN)
#if CPU(X86)
typedef i386_thread_state_t PlatformThreadRegisters;
#elif CPU(X86_64)
typedef x86_thread_state64_t PlatformThreadRegisters;
#elif CPU(PPC)
typedef ppc_thread_state_t PlatformThreadRegisters;
#elif CPU(PPC64)
typedef ppc_thread_state64_t PlatformThreadRegisters;
#elif CPU(ARM)
typedef arm_thread_state_t PlatformThreadRegisters;
#else
#error Unknown Architecture
#endif
#elif OS(WINDOWS) && CPU(X86)
typedef CONTEXT PlatformThreadRegisters;
#else
#error Need a thread register struct for this platform
#endif
static size_t getPlatformThreadRegisters(const PlatformThread& platformThread, PlatformThreadRegisters& regs)
{
#if OS(DARWIN)
#if CPU(X86)
unsigned user_count = sizeof(regs)/sizeof(int);
thread_state_flavor_t flavor = i386_THREAD_STATE;
#elif CPU(X86_64)
unsigned user_count = x86_THREAD_STATE64_COUNT;
thread_state_flavor_t flavor = x86_THREAD_STATE64;
#elif CPU(PPC)
unsigned user_count = PPC_THREAD_STATE_COUNT;
thread_state_flavor_t flavor = PPC_THREAD_STATE;
#elif CPU(PPC64)
unsigned user_count = PPC_THREAD_STATE64_COUNT;
thread_state_flavor_t flavor = PPC_THREAD_STATE64;
#elif CPU(ARM)
unsigned user_count = ARM_THREAD_STATE_COUNT;
thread_state_flavor_t flavor = ARM_THREAD_STATE;
#else
#error Unknown Architecture
#endif
kern_return_t result = thread_get_state(platformThread, flavor, (thread_state_t)&regs, &user_count);
if (result != KERN_SUCCESS) {
WTFReportFatalError(__FILE__, __LINE__, WTF_PRETTY_FUNCTION,
"JavaScript garbage collection failed because thread_get_state returned an error (%d). This is probably the result of running inside Rosetta, which is not supported.", result);
CRASH();
}
return user_count * sizeof(usword_t);
// end OS(DARWIN)
#elif OS(WINDOWS) && CPU(X86)
regs.ContextFlags = CONTEXT_INTEGER | CONTEXT_CONTROL | CONTEXT_SEGMENTS;
GetThreadContext(platformThread, &regs);
return sizeof(CONTEXT);
#else
#error Need a way to get thread registers on this platform
#endif
}
static inline void* otherThreadStackPointer(const PlatformThreadRegisters& regs)
{
#if OS(DARWIN)
#if __DARWIN_UNIX03
#if CPU(X86)
return reinterpret_cast<void*>(regs.__esp);
#elif CPU(X86_64)
return reinterpret_cast<void*>(regs.__rsp);
#elif CPU(PPC) || CPU(PPC64)
return reinterpret_cast<void*>(regs.__r1);
#elif CPU(ARM)
return reinterpret_cast<void*>(regs.__sp);
#else
#error Unknown Architecture
#endif
#else // !__DARWIN_UNIX03
#if CPU(X86)
return reinterpret_cast<void*>(regs.esp);
#elif CPU(X86_64)
return reinterpret_cast<void*>(regs.rsp);
#elif CPU(PPC) || CPU(PPC64)
return reinterpret_cast<void*>(regs.r1);
#else
#error Unknown Architecture
#endif
#endif // __DARWIN_UNIX03
// end OS(DARWIN)
#elif CPU(X86) && OS(WINDOWS)
return reinterpret_cast<void*>((uintptr_t) regs.Esp);
#else
#error Need a way to get the stack pointer for another thread on this platform
#endif
}
void Heap::markOtherThreadConservatively(MarkStack& markStack, Thread* thread)
{
suspendThread(thread->platformThread);
PlatformThreadRegisters regs;
size_t regSize = getPlatformThreadRegisters(thread->platformThread, regs);
// mark the thread's registers
markConservatively(markStack, static_cast<void*>(&regs), static_cast<void*>(reinterpret_cast<char*>(&regs) + regSize));
void* stackPointer = otherThreadStackPointer(regs);
markConservatively(markStack, stackPointer, thread->stackBase);
resumeThread(thread->platformThread);
}
#endif
void Heap::markStackObjectsConservatively(MarkStack& markStack)
{
markCurrentThreadConservatively(markStack);
#if ENABLE(JSC_MULTIPLE_THREADS)
if (m_currentThreadRegistrar) {
MutexLocker lock(m_registeredThreadsMutex);
#ifndef NDEBUG
// Forbid malloc during the mark phase. Marking a thread suspends it, so
// a malloc inside markChildren() would risk a deadlock with a thread that had been
// suspended while holding the malloc lock.
fastMallocForbid();
#endif
// It is safe to access the registeredThreads list, because we earlier asserted that locks are being held,
// and since this is a shared heap, they are real locks.
for (Thread* thread = m_registeredThreads; thread; thread = thread->next) {
if (!pthread_equal(thread->posixThread, pthread_self()))
markOtherThreadConservatively(markStack, thread);
}
#ifndef NDEBUG
fastMallocAllow();
#endif
}
#endif
}
void Heap::protect(JSValue k)
{
ASSERT(k);
ASSERT(JSLock::currentThreadIsHoldingLock() || !m_globalData->isSharedInstance);
if (!k.isCell())
return;
m_protectedValues.add(k.asCell());
}
bool Heap::unprotect(JSValue k)
{
ASSERT(k);
ASSERT(JSLock::currentThreadIsHoldingLock() || !m_globalData->isSharedInstance);
if (!k.isCell())
return false;
return m_protectedValues.remove(k.asCell());
}
void Heap::markProtectedObjects(MarkStack& markStack)
{
ProtectCountSet::iterator end = m_protectedValues.end();
for (ProtectCountSet::iterator it = m_protectedValues.begin(); it != end; ++it) {
markStack.append(it->first);
markStack.drain();
}
}
void Heap::clearMarkBits()
{
for (size_t i = 0; i < m_heap.usedBlocks; ++i)
clearMarkBits(m_heap.blocks[i]);
}
void Heap::clearMarkBits(CollectorBlock* block)
{
// allocate assumes that the last cell in every block is marked.
block->marked.clearAll();
block->marked.set(HeapConstants::cellsPerBlock - 1);
}
size_t Heap::markedCells(size_t startBlock, size_t startCell) const
{
ASSERT(startBlock <= m_heap.usedBlocks);
ASSERT(startCell < HeapConstants::cellsPerBlock);
if (startBlock >= m_heap.usedBlocks)
return 0;
size_t result = 0;
result += m_heap.blocks[startBlock]->marked.count(startCell);
for (size_t i = startBlock + 1; i < m_heap.usedBlocks; ++i)
result += m_heap.blocks[i]->marked.count();
return result;
}
void Heap::sweep()
{
ASSERT(m_heap.operationInProgress == NoOperation);
if (m_heap.operationInProgress != NoOperation)
CRASH();
m_heap.operationInProgress = Collection;
#if !ENABLE(JSC_ZOMBIES)
Structure* dummyMarkableCellStructure = m_globalData->dummyMarkableCellStructure.get();
#endif
DeadObjectIterator it(m_heap, m_heap.nextBlock, m_heap.nextCell);
DeadObjectIterator end(m_heap, m_heap.usedBlocks);
for ( ; it != end; ++it) {
JSCell* cell = *it;
#if ENABLE(JSC_ZOMBIES)
if (!cell->isZombie()) {
const ClassInfo* info = cell->classInfo();
cell->~JSCell();
new (cell) JSZombie(info, JSZombie::leakedZombieStructure());
Heap::markCell(cell);
}
#else
cell->~JSCell();
// Callers of sweep assume it's safe to mark any cell in the heap.
new (cell) JSCell(dummyMarkableCellStructure);
#endif
}
m_heap.operationInProgress = NoOperation;
}
void Heap::markRoots()
{
#ifndef NDEBUG
if (m_globalData->isSharedInstance) {
ASSERT(JSLock::lockCount() > 0);
ASSERT(JSLock::currentThreadIsHoldingLock());
}
#endif
ASSERT(m_heap.operationInProgress == NoOperation);
if (m_heap.operationInProgress != NoOperation)
CRASH();
m_heap.operationInProgress = Collection;
MarkStack& markStack = m_globalData->markStack;
// Reset mark bits.
clearMarkBits();
// Mark stack roots.
markStackObjectsConservatively(markStack);
m_globalData->interpreter->registerFile().markCallFrames(markStack, this);
// Mark explicitly registered roots.
markProtectedObjects(markStack);
// Mark misc. other roots.
if (m_markListSet && m_markListSet->size())
MarkedArgumentBuffer::markLists(markStack, *m_markListSet);
if (m_globalData->exception)
markStack.append(m_globalData->exception);
if (m_globalData->functionCodeBlockBeingReparsed)
m_globalData->functionCodeBlockBeingReparsed->markAggregate(markStack);
if (m_globalData->firstStringifierToMark)
JSONObject::markStringifiers(markStack, m_globalData->firstStringifierToMark);
// Mark the small strings cache last, since it will clear itself if nothing
// else has marked it.
m_globalData->smallStrings.markChildren(markStack);
markStack.drain();
markStack.compact();
m_heap.operationInProgress = NoOperation;
}
size_t Heap::objectCount() const
{
return m_heap.nextBlock * HeapConstants::cellsPerBlock // allocated full blocks
+ m_heap.nextCell // allocated cells in current block
+ markedCells(m_heap.nextBlock, m_heap.nextCell) // marked cells in remainder of m_heap
- m_heap.usedBlocks; // 1 cell per block is a dummy sentinel
}
void Heap::addToStatistics(Heap::Statistics& statistics) const
{
statistics.size += m_heap.usedBlocks * BLOCK_SIZE;
statistics.free += m_heap.usedBlocks * BLOCK_SIZE - (objectCount() * HeapConstants::cellSize);
}
Heap::Statistics Heap::statistics() const
{
Statistics statistics = { 0, 0 };
addToStatistics(statistics);
return statistics;
}
size_t Heap::globalObjectCount()
{
size_t count = 0;
if (JSGlobalObject* head = m_globalData->head) {
JSGlobalObject* o = head;
do {
++count;
o = o->next();
} while (o != head);
}
return count;
}
size_t Heap::protectedGlobalObjectCount()
{
size_t count = 0;
if (JSGlobalObject* head = m_globalData->head) {
JSGlobalObject* o = head;
do {
if (m_protectedValues.contains(o))
++count;
o = o->next();
} while (o != head);
}
return count;
}
size_t Heap::protectedObjectCount()
{
return m_protectedValues.size();
}
static const char* typeName(JSCell* cell)
{
if (cell->isString())
return "string";
#if USE(JSVALUE32)
if (cell->isNumber())
return "number";
#endif
if (cell->isGetterSetter())
return "Getter-Setter";
if (cell->isAPIValueWrapper())
return "API wrapper";
if (cell->isPropertyNameIterator())
return "For-in iterator";
if (!cell->isObject())
return "[empty cell]";
const ClassInfo* info = cell->classInfo();
return info ? info->className : "Object";
}
HashCountedSet<const char*>* Heap::protectedObjectTypeCounts()
{
HashCountedSet<const char*>* counts = new HashCountedSet<const char*>;
ProtectCountSet::iterator end = m_protectedValues.end();
for (ProtectCountSet::iterator it = m_protectedValues.begin(); it != end; ++it)
counts->add(typeName(it->first));
return counts;
}
HashCountedSet<const char*>* Heap::objectTypeCounts()
{
HashCountedSet<const char*>* counts = new HashCountedSet<const char*>;
LiveObjectIterator it = primaryHeapBegin();
LiveObjectIterator heapEnd = primaryHeapEnd();
for ( ; it != heapEnd; ++it)
counts->add(typeName(*it));
return counts;
}
bool Heap::isBusy()
{
return m_heap.operationInProgress != NoOperation;
}
void Heap::reset()
{
JAVASCRIPTCORE_GC_BEGIN();
markRoots();
JAVASCRIPTCORE_GC_MARKED();
m_heap.nextCell = 0;
m_heap.nextBlock = 0;
m_heap.nextNumber = 0;
m_heap.extraCost = 0;
#if ENABLE(JSC_ZOMBIES)
sweep();
#endif
resizeBlocks();
JAVASCRIPTCORE_GC_END();
}
void Heap::collectAllGarbage()
{
JAVASCRIPTCORE_GC_BEGIN();
// If the last iteration through the heap deallocated blocks, we need
// to clean up remaining garbage before marking. Otherwise, the conservative
// marking mechanism might follow a pointer to unmapped memory.
if (m_heap.didShrink)
sweep();
markRoots();
JAVASCRIPTCORE_GC_MARKED();
m_heap.nextCell = 0;
m_heap.nextBlock = 0;
m_heap.nextNumber = 0;
m_heap.extraCost = 0;
sweep();
resizeBlocks();
JAVASCRIPTCORE_GC_END();
}
LiveObjectIterator Heap::primaryHeapBegin()
{
return LiveObjectIterator(m_heap, 0);
}
LiveObjectIterator Heap::primaryHeapEnd()
{
return LiveObjectIterator(m_heap, m_heap.usedBlocks);
}
} // namespace JSC