blob: 27e30fc394dfcaa449d08a746b4852b88c783019 [file] [log] [blame]
/*
* Copyright (C) 2008 Apple Inc. All rights reserved.
* Copyright (C) 2010 MIPS Technologies, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY MIPS TECHNOLOGIES, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MIPS TECHNOLOGIES, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MacroAssemblerMIPS_h
#define MacroAssemblerMIPS_h
#if ENABLE(ASSEMBLER) && CPU(MIPS)
#include "AbstractMacroAssembler.h"
#include "MIPSAssembler.h"
namespace JSC {
class MacroAssemblerMIPS : public AbstractMacroAssembler<MIPSAssembler> {
public:
MacroAssemblerMIPS()
: m_fixedWidth(false)
{
}
static const Scale ScalePtr = TimesFour;
// For storing immediate number
static const RegisterID immTempRegister = MIPSRegisters::t0;
// For storing data loaded from the memory
static const RegisterID dataTempRegister = MIPSRegisters::t1;
// For storing address base
static const RegisterID addrTempRegister = MIPSRegisters::t2;
// For storing compare result
static const RegisterID cmpTempRegister = MIPSRegisters::t3;
// FP temp register
static const FPRegisterID fpTempRegister = MIPSRegisters::f16;
enum Condition {
Equal,
NotEqual,
Above,
AboveOrEqual,
Below,
BelowOrEqual,
GreaterThan,
GreaterThanOrEqual,
LessThan,
LessThanOrEqual,
Overflow,
Signed,
Zero,
NonZero
};
enum DoubleCondition {
DoubleEqual,
DoubleNotEqual,
DoubleGreaterThan,
DoubleGreaterThanOrEqual,
DoubleLessThan,
DoubleLessThanOrEqual,
DoubleEqualOrUnordered,
DoubleNotEqualOrUnordered,
DoubleGreaterThanOrUnordered,
DoubleGreaterThanOrEqualOrUnordered,
DoubleLessThanOrUnordered,
DoubleLessThanOrEqualOrUnordered
};
static const RegisterID stackPointerRegister = MIPSRegisters::sp;
static const RegisterID returnAddressRegister = MIPSRegisters::ra;
// Integer arithmetic operations:
//
// Operations are typically two operand - operation(source, srcDst)
// For many operations the source may be an Imm32, the srcDst operand
// may often be a memory location (explictly described using an Address
// object).
void add32(RegisterID src, RegisterID dest)
{
m_assembler.addu(dest, dest, src);
}
void add32(Imm32 imm, RegisterID dest)
{
add32(imm, dest, dest);
}
void add32(Imm32 imm, RegisterID src, RegisterID dest)
{
if (!imm.m_isPointer && imm.m_value >= -32768 && imm.m_value <= 32767
&& !m_fixedWidth) {
/*
addiu dest, src, imm
*/
m_assembler.addiu(dest, src, imm.m_value);
} else {
/*
li immTemp, imm
addu dest, src, immTemp
*/
move(imm, immTempRegister);
m_assembler.addu(dest, src, immTempRegister);
}
}
void add32(Imm32 imm, Address address)
{
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth) {
/*
lw dataTemp, offset(base)
li immTemp, imm
addu dataTemp, dataTemp, immTemp
sw dataTemp, offset(base)
*/
m_assembler.lw(dataTempRegister, address.base, address.offset);
if (!imm.m_isPointer
&& imm.m_value >= -32768 && imm.m_value <= 32767
&& !m_fixedWidth)
m_assembler.addiu(dataTempRegister, dataTempRegister,
imm.m_value);
else {
move(imm, immTempRegister);
m_assembler.addu(dataTempRegister, dataTempRegister,
immTempRegister);
}
m_assembler.sw(dataTempRegister, address.base, address.offset);
} else {
/*
lui addrTemp, (offset + 0x8000) >> 16
addu addrTemp, addrTemp, base
lw dataTemp, (offset & 0xffff)(addrTemp)
li immtemp, imm
addu dataTemp, dataTemp, immTemp
sw dataTemp, (offset & 0xffff)(addrTemp)
*/
m_assembler.lui(addrTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lw(dataTempRegister, addrTempRegister, address.offset);
if (imm.m_value >= -32768 && imm.m_value <= 32767 && !m_fixedWidth)
m_assembler.addiu(dataTempRegister, dataTempRegister,
imm.m_value);
else {
move(imm, immTempRegister);
m_assembler.addu(dataTempRegister, dataTempRegister,
immTempRegister);
}
m_assembler.sw(dataTempRegister, addrTempRegister, address.offset);
}
}
void add32(Address src, RegisterID dest)
{
load32(src, dataTempRegister);
add32(dataTempRegister, dest);
}
void add32(RegisterID src, Address dest)
{
if (dest.offset >= -32768 && dest.offset <= 32767 && !m_fixedWidth) {
/*
lw dataTemp, offset(base)
addu dataTemp, dataTemp, src
sw dataTemp, offset(base)
*/
m_assembler.lw(dataTempRegister, dest.base, dest.offset);
m_assembler.addu(dataTempRegister, dataTempRegister, src);
m_assembler.sw(dataTempRegister, dest.base, dest.offset);
} else {
/*
lui addrTemp, (offset + 0x8000) >> 16
addu addrTemp, addrTemp, base
lw dataTemp, (offset & 0xffff)(addrTemp)
addu dataTemp, dataTemp, src
sw dataTemp, (offset & 0xffff)(addrTemp)
*/
m_assembler.lui(addrTempRegister, (dest.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister, dest.base);
m_assembler.lw(dataTempRegister, addrTempRegister, dest.offset);
m_assembler.addu(dataTempRegister, dataTempRegister, src);
m_assembler.sw(dataTempRegister, addrTempRegister, dest.offset);
}
}
void add32(Imm32 imm, AbsoluteAddress address)
{
/*
li addrTemp, address
li immTemp, imm
lw dataTemp, 0(addrTemp)
addu dataTemp, dataTemp, immTemp
sw dataTemp, 0(addrTemp)
*/
move(ImmPtr(address.m_ptr), addrTempRegister);
m_assembler.lw(dataTempRegister, addrTempRegister, 0);
if (!imm.m_isPointer && imm.m_value >= -32768 && imm.m_value <= 32767
&& !m_fixedWidth)
m_assembler.addiu(dataTempRegister, dataTempRegister, imm.m_value);
else {
move(imm, immTempRegister);
m_assembler.addu(dataTempRegister, dataTempRegister, immTempRegister);
}
m_assembler.sw(dataTempRegister, addrTempRegister, 0);
}
void and32(RegisterID src, RegisterID dest)
{
m_assembler.andInsn(dest, dest, src);
}
void and32(Imm32 imm, RegisterID dest)
{
if (!imm.m_isPointer && !imm.m_value && !m_fixedWidth)
move(MIPSRegisters::zero, dest);
else if (!imm.m_isPointer && imm.m_value > 0 && imm.m_value < 65535
&& !m_fixedWidth)
m_assembler.andi(dest, dest, imm.m_value);
else {
/*
li immTemp, imm
and dest, dest, immTemp
*/
move(imm, immTempRegister);
m_assembler.andInsn(dest, dest, immTempRegister);
}
}
void lshift32(Imm32 imm, RegisterID dest)
{
m_assembler.sll(dest, dest, imm.m_value);
}
void lshift32(RegisterID shiftAmount, RegisterID dest)
{
m_assembler.sllv(dest, dest, shiftAmount);
}
void mul32(RegisterID src, RegisterID dest)
{
m_assembler.mul(dest, dest, src);
}
void mul32(Imm32 imm, RegisterID src, RegisterID dest)
{
if (!imm.m_isPointer && !imm.m_value && !m_fixedWidth)
move(MIPSRegisters::zero, dest);
else if (!imm.m_isPointer && imm.m_value == 1 && !m_fixedWidth)
move(src, dest);
else {
/*
li dataTemp, imm
mul dest, src, dataTemp
*/
move(imm, dataTempRegister);
m_assembler.mul(dest, src, dataTempRegister);
}
}
void not32(RegisterID srcDest)
{
m_assembler.nor(srcDest, srcDest, MIPSRegisters::zero);
}
void or32(RegisterID src, RegisterID dest)
{
m_assembler.orInsn(dest, dest, src);
}
void or32(Imm32 imm, RegisterID dest)
{
if (!imm.m_isPointer && !imm.m_value && !m_fixedWidth)
return;
if (!imm.m_isPointer && imm.m_value > 0 && imm.m_value < 65535
&& !m_fixedWidth) {
m_assembler.ori(dest, dest, imm.m_value);
return;
}
/*
li dataTemp, imm
or dest, dest, dataTemp
*/
move(imm, dataTempRegister);
m_assembler.orInsn(dest, dest, dataTempRegister);
}
void rshift32(RegisterID shiftAmount, RegisterID dest)
{
m_assembler.srav(dest, dest, shiftAmount);
}
void rshift32(Imm32 imm, RegisterID dest)
{
m_assembler.sra(dest, dest, imm.m_value);
}
void sub32(RegisterID src, RegisterID dest)
{
m_assembler.subu(dest, dest, src);
}
void sub32(Imm32 imm, RegisterID dest)
{
if (!imm.m_isPointer && imm.m_value >= -32767 && imm.m_value <= 32768
&& !m_fixedWidth) {
/*
addiu dest, src, imm
*/
m_assembler.addiu(dest, dest, -imm.m_value);
} else {
/*
li immTemp, imm
subu dest, src, immTemp
*/
move(imm, immTempRegister);
m_assembler.subu(dest, dest, immTempRegister);
}
}
void sub32(Imm32 imm, Address address)
{
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth) {
/*
lw dataTemp, offset(base)
li immTemp, imm
subu dataTemp, dataTemp, immTemp
sw dataTemp, offset(base)
*/
m_assembler.lw(dataTempRegister, address.base, address.offset);
if (!imm.m_isPointer
&& imm.m_value >= -32767 && imm.m_value <= 32768
&& !m_fixedWidth)
m_assembler.addiu(dataTempRegister, dataTempRegister,
-imm.m_value);
else {
move(imm, immTempRegister);
m_assembler.subu(dataTempRegister, dataTempRegister,
immTempRegister);
}
m_assembler.sw(dataTempRegister, address.base, address.offset);
} else {
/*
lui addrTemp, (offset + 0x8000) >> 16
addu addrTemp, addrTemp, base
lw dataTemp, (offset & 0xffff)(addrTemp)
li immtemp, imm
subu dataTemp, dataTemp, immTemp
sw dataTemp, (offset & 0xffff)(addrTemp)
*/
m_assembler.lui(addrTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lw(dataTempRegister, addrTempRegister, address.offset);
if (!imm.m_isPointer
&& imm.m_value >= -32767 && imm.m_value <= 32768
&& !m_fixedWidth)
m_assembler.addiu(dataTempRegister, dataTempRegister,
-imm.m_value);
else {
move(imm, immTempRegister);
m_assembler.subu(dataTempRegister, dataTempRegister,
immTempRegister);
}
m_assembler.sw(dataTempRegister, addrTempRegister, address.offset);
}
}
void sub32(Address src, RegisterID dest)
{
load32(src, dataTempRegister);
sub32(dataTempRegister, dest);
}
void sub32(Imm32 imm, AbsoluteAddress address)
{
/*
li addrTemp, address
li immTemp, imm
lw dataTemp, 0(addrTemp)
subu dataTemp, dataTemp, immTemp
sw dataTemp, 0(addrTemp)
*/
move(ImmPtr(address.m_ptr), addrTempRegister);
m_assembler.lw(dataTempRegister, addrTempRegister, 0);
if (!imm.m_isPointer && imm.m_value >= -32767 && imm.m_value <= 32768
&& !m_fixedWidth) {
m_assembler.addiu(dataTempRegister, dataTempRegister,
-imm.m_value);
} else {
move(imm, immTempRegister);
m_assembler.subu(dataTempRegister, dataTempRegister, immTempRegister);
}
m_assembler.sw(dataTempRegister, addrTempRegister, 0);
}
void xor32(RegisterID src, RegisterID dest)
{
m_assembler.xorInsn(dest, dest, src);
}
void xor32(Imm32 imm, RegisterID dest)
{
/*
li immTemp, imm
xor dest, dest, immTemp
*/
move(imm, immTempRegister);
m_assembler.xorInsn(dest, dest, immTempRegister);
}
// Memory access operations:
//
// Loads are of the form load(address, destination) and stores of the form
// store(source, address). The source for a store may be an Imm32. Address
// operand objects to loads and store will be implicitly constructed if a
// register is passed.
void load32(ImplicitAddress address, RegisterID dest)
{
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth)
m_assembler.lw(dest, address.base, address.offset);
else {
/*
lui addrTemp, (offset + 0x8000) >> 16
addu addrTemp, addrTemp, base
lw dest, (offset & 0xffff)(addrTemp)
*/
m_assembler.lui(addrTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lw(dest, addrTempRegister, address.offset);
}
}
void load32(BaseIndex address, RegisterID dest)
{
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth) {
/*
sll addrTemp, address.index, address.scale
addu addrTemp, addrTemp, address.base
lw dest, address.offset(addrTemp)
*/
m_assembler.sll(addrTempRegister, address.index, address.scale);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lw(dest, addrTempRegister, address.offset);
} else {
/*
sll addrTemp, address.index, address.scale
addu addrTemp, addrTemp, address.base
lui immTemp, (address.offset + 0x8000) >> 16
addu addrTemp, addrTemp, immTemp
lw dest, (address.offset & 0xffff)(at)
*/
m_assembler.sll(addrTempRegister, address.index, address.scale);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lui(immTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister,
immTempRegister);
m_assembler.lw(dest, addrTempRegister, address.offset);
}
}
void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest)
{
if (address.offset >= -32768 && address.offset <= 32764
&& !m_fixedWidth) {
/*
sll addrTemp, address.index, address.scale
addu addrTemp, addrTemp, address.base
(Big-Endian)
lwl dest, address.offset(addrTemp)
lwr dest, address.offset+3(addrTemp)
(Little-Endian)
lwl dest, address.offset+3(addrTemp)
lwr dest, address.offset(addrTemp)
*/
m_assembler.sll(addrTempRegister, address.index, address.scale);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
#if CPU(BIG_ENDIAN)
m_assembler.lwl(dest, addrTempRegister, address.offset);
m_assembler.lwr(dest, addrTempRegister, address.offset + 3);
#else
m_assembler.lwl(dest, addrTempRegister, address.offset + 3);
m_assembler.lwr(dest, addrTempRegister, address.offset);
#endif
} else {
/*
sll addrTemp, address.index, address.scale
addu addrTemp, addrTemp, address.base
lui immTemp, address.offset >> 16
ori immTemp, immTemp, address.offset & 0xffff
addu addrTemp, addrTemp, immTemp
(Big-Endian)
lw dest, 0(at)
lw dest, 3(at)
(Little-Endian)
lw dest, 3(at)
lw dest, 0(at)
*/
m_assembler.sll(addrTempRegister, address.index, address.scale);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lui(immTempRegister, address.offset >> 16);
m_assembler.ori(immTempRegister, immTempRegister, address.offset);
m_assembler.addu(addrTempRegister, addrTempRegister,
immTempRegister);
#if CPU(BIG_ENDIAN)
m_assembler.lwl(dest, addrTempRegister, 0);
m_assembler.lwr(dest, addrTempRegister, 3);
#else
m_assembler.lwl(dest, addrTempRegister, 3);
m_assembler.lwr(dest, addrTempRegister, 0);
#endif
}
}
void load32(void* address, RegisterID dest)
{
/*
li addrTemp, address
lw dest, 0(addrTemp)
*/
move(ImmPtr(address), addrTempRegister);
m_assembler.lw(dest, addrTempRegister, 0);
}
DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
{
m_fixedWidth = true;
/*
lui addrTemp, address.offset >> 16
ori addrTemp, addrTemp, address.offset & 0xffff
addu addrTemp, addrTemp, address.base
lw dest, 0(addrTemp)
*/
DataLabel32 dataLabel(this);
move(Imm32(address.offset), addrTempRegister);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lw(dest, addrTempRegister, 0);
m_fixedWidth = false;
return dataLabel;
}
Label loadPtrWithPatchToLEA(Address address, RegisterID dest)
{
m_fixedWidth = true;
/*
lui addrTemp, address.offset >> 16
ori addrTemp, addrTemp, address.offset & 0xffff
addu addrTemp, addrTemp, address.base
lw dest, 0(addrTemp)
*/
Label label(this);
move(Imm32(address.offset), addrTempRegister);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lw(dest, addrTempRegister, 0);
m_fixedWidth = false;
return label;
}
Label loadPtrWithAddressOffsetPatch(Address address, RegisterID dest)
{
return loadPtrWithPatchToLEA(address, dest);
}
/* Need to use zero-extened load half-word for load16. */
void load16(BaseIndex address, RegisterID dest)
{
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth) {
/*
sll addrTemp, address.index, address.scale
addu addrTemp, addrTemp, address.base
lhu dest, address.offset(addrTemp)
*/
m_assembler.sll(addrTempRegister, address.index, address.scale);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lhu(dest, addrTempRegister, address.offset);
} else {
/*
sll addrTemp, address.index, address.scale
addu addrTemp, addrTemp, address.base
lui immTemp, (address.offset + 0x8000) >> 16
addu addrTemp, addrTemp, immTemp
lhu dest, (address.offset & 0xffff)(addrTemp)
*/
m_assembler.sll(addrTempRegister, address.index, address.scale);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lui(immTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister,
immTempRegister);
m_assembler.lhu(dest, addrTempRegister, address.offset);
}
}
DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
{
m_fixedWidth = true;
/*
lui addrTemp, address.offset >> 16
ori addrTemp, addrTemp, address.offset & 0xffff
addu addrTemp, addrTemp, address.base
sw src, 0(addrTemp)
*/
DataLabel32 dataLabel(this);
move(Imm32(address.offset), addrTempRegister);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.sw(src, addrTempRegister, 0);
m_fixedWidth = false;
return dataLabel;
}
void store32(RegisterID src, ImplicitAddress address)
{
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth)
m_assembler.sw(src, address.base, address.offset);
else {
/*
lui addrTemp, (offset + 0x8000) >> 16
addu addrTemp, addrTemp, base
sw src, (offset & 0xffff)(addrTemp)
*/
m_assembler.lui(addrTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.sw(src, addrTempRegister, address.offset);
}
}
void store32(RegisterID src, BaseIndex address)
{
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth) {
/*
sll addrTemp, address.index, address.scale
addu addrTemp, addrTemp, address.base
sw src, address.offset(addrTemp)
*/
m_assembler.sll(addrTempRegister, address.index, address.scale);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.sw(src, addrTempRegister, address.offset);
} else {
/*
sll addrTemp, address.index, address.scale
addu addrTemp, addrTemp, address.base
lui immTemp, (address.offset + 0x8000) >> 16
addu addrTemp, addrTemp, immTemp
sw src, (address.offset & 0xffff)(at)
*/
m_assembler.sll(addrTempRegister, address.index, address.scale);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lui(immTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister,
immTempRegister);
m_assembler.sw(src, addrTempRegister, address.offset);
}
}
void store32(Imm32 imm, ImplicitAddress address)
{
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth) {
if (!imm.m_isPointer && !imm.m_value)
m_assembler.sw(MIPSRegisters::zero, address.base,
address.offset);
else {
move(imm, immTempRegister);
m_assembler.sw(immTempRegister, address.base, address.offset);
}
} else {
/*
lui addrTemp, (offset + 0x8000) >> 16
addu addrTemp, addrTemp, base
sw immTemp, (offset & 0xffff)(addrTemp)
*/
m_assembler.lui(addrTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
if (!imm.m_isPointer && !imm.m_value && !m_fixedWidth)
m_assembler.sw(MIPSRegisters::zero, addrTempRegister,
address.offset);
else {
move(imm, immTempRegister);
m_assembler.sw(immTempRegister, addrTempRegister,
address.offset);
}
}
}
void store32(RegisterID src, void* address)
{
/*
li addrTemp, address
sw src, 0(addrTemp)
*/
move(ImmPtr(address), addrTempRegister);
m_assembler.sw(src, addrTempRegister, 0);
}
void store32(Imm32 imm, void* address)
{
/*
li immTemp, imm
li addrTemp, address
sw src, 0(addrTemp)
*/
if (!imm.m_isPointer && !imm.m_value && !m_fixedWidth) {
move(ImmPtr(address), addrTempRegister);
m_assembler.sw(MIPSRegisters::zero, addrTempRegister, 0);
} else {
move(imm, immTempRegister);
move(ImmPtr(address), addrTempRegister);
m_assembler.sw(immTempRegister, addrTempRegister, 0);
}
}
// Floating-point operations:
bool supportsFloatingPoint() const
{
#if WTF_MIPS_DOUBLE_FLOAT
return true;
#else
return false;
#endif
}
bool supportsFloatingPointTruncate() const
{
#if WTF_MIPS_DOUBLE_FLOAT && WTF_MIPS_ISA_AT_LEAST(2)
return true;
#else
return false;
#endif
}
// Stack manipulation operations:
//
// The ABI is assumed to provide a stack abstraction to memory,
// containing machine word sized units of data. Push and pop
// operations add and remove a single register sized unit of data
// to or from the stack. Peek and poke operations read or write
// values on the stack, without moving the current stack position.
void pop(RegisterID dest)
{
m_assembler.lw(dest, MIPSRegisters::sp, 0);
m_assembler.addiu(MIPSRegisters::sp, MIPSRegisters::sp, 4);
}
void push(RegisterID src)
{
m_assembler.addiu(MIPSRegisters::sp, MIPSRegisters::sp, -4);
m_assembler.sw(src, MIPSRegisters::sp, 0);
}
void push(Address address)
{
load32(address, dataTempRegister);
push(dataTempRegister);
}
void push(Imm32 imm)
{
move(imm, immTempRegister);
push(immTempRegister);
}
// Register move operations:
//
// Move values in registers.
void move(Imm32 imm, RegisterID dest)
{
if (!imm.m_isPointer && !imm.m_value && !m_fixedWidth)
move(MIPSRegisters::zero, dest);
else if (imm.m_isPointer || m_fixedWidth) {
m_assembler.lui(dest, imm.m_value >> 16);
m_assembler.ori(dest, dest, imm.m_value);
} else
m_assembler.li(dest, imm.m_value);
}
void move(RegisterID src, RegisterID dest)
{
if (src != dest || m_fixedWidth)
m_assembler.move(dest, src);
}
void move(ImmPtr imm, RegisterID dest)
{
move(Imm32(imm), dest);
}
void swap(RegisterID reg1, RegisterID reg2)
{
move(reg1, immTempRegister);
move(reg2, reg1);
move(immTempRegister, reg2);
}
void signExtend32ToPtr(RegisterID src, RegisterID dest)
{
if (src != dest || m_fixedWidth)
move(src, dest);
}
void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
{
if (src != dest || m_fixedWidth)
move(src, dest);
}
// Forwards / external control flow operations:
//
// This set of jump and conditional branch operations return a Jump
// object which may linked at a later point, allow forwards jump,
// or jumps that will require external linkage (after the code has been
// relocated).
//
// For branches, signed <, >, <= and >= are denoted as l, g, le, and ge
// respecitvely, for unsigned comparisons the names b, a, be, and ae are
// used (representing the names 'below' and 'above').
//
// Operands to the comparision are provided in the expected order, e.g.
// jle32(reg1, Imm32(5)) will branch if the value held in reg1, when
// treated as a signed 32bit value, is less than or equal to 5.
//
// jz and jnz test whether the first operand is equal to zero, and take
// an optional second operand of a mask under which to perform the test.
Jump branch32(Condition cond, RegisterID left, RegisterID right)
{
if (cond == Equal || cond == Zero)
return branchEqual(left, right);
if (cond == NotEqual || cond == NonZero)
return branchNotEqual(left, right);
if (cond == Above) {
m_assembler.sltu(cmpTempRegister, right, left);
return branchNotEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == AboveOrEqual) {
m_assembler.sltu(cmpTempRegister, left, right);
return branchEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == Below) {
m_assembler.sltu(cmpTempRegister, left, right);
return branchNotEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == BelowOrEqual) {
m_assembler.sltu(cmpTempRegister, right, left);
return branchEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == GreaterThan) {
m_assembler.slt(cmpTempRegister, right, left);
return branchNotEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == GreaterThanOrEqual) {
m_assembler.slt(cmpTempRegister, left, right);
return branchEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == LessThan) {
m_assembler.slt(cmpTempRegister, left, right);
return branchNotEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == LessThanOrEqual) {
m_assembler.slt(cmpTempRegister, right, left);
return branchEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == Overflow) {
/*
xor cmpTemp, left, right
bgez No_overflow, cmpTemp # same sign bit -> no overflow
nop
subu cmpTemp, left, right
xor cmpTemp, cmpTemp, left
bgez No_overflow, cmpTemp # same sign bit -> no overflow
nop
b Overflow
nop
nop
nop
nop
nop
No_overflow:
*/
m_assembler.xorInsn(cmpTempRegister, left, right);
m_assembler.bgez(cmpTempRegister, 11);
m_assembler.nop();
m_assembler.subu(cmpTempRegister, left, right);
m_assembler.xorInsn(cmpTempRegister, cmpTempRegister, left);
m_assembler.bgez(cmpTempRegister, 7);
m_assembler.nop();
return jump();
}
if (cond == Signed) {
m_assembler.subu(cmpTempRegister, left, right);
// Check if the result is negative.
m_assembler.slt(cmpTempRegister, cmpTempRegister,
MIPSRegisters::zero);
return branchNotEqual(cmpTempRegister, MIPSRegisters::zero);
}
ASSERT(0);
return Jump();
}
Jump branch32(Condition cond, RegisterID left, Imm32 right)
{
move(right, immTempRegister);
return branch32(cond, left, immTempRegister);
}
Jump branch32(Condition cond, RegisterID left, Address right)
{
load32(right, dataTempRegister);
return branch32(cond, left, dataTempRegister);
}
Jump branch32(Condition cond, Address left, RegisterID right)
{
load32(left, dataTempRegister);
return branch32(cond, dataTempRegister, right);
}
Jump branch32(Condition cond, Address left, Imm32 right)
{
load32(left, dataTempRegister);
move(right, immTempRegister);
return branch32(cond, dataTempRegister, immTempRegister);
}
Jump branch32(Condition cond, BaseIndex left, Imm32 right)
{
load32(left, dataTempRegister);
// Be careful that the previous load32() uses immTempRegister.
// So, we need to put move() after load32().
move(right, immTempRegister);
return branch32(cond, dataTempRegister, immTempRegister);
}
Jump branch32WithUnalignedHalfWords(Condition cond, BaseIndex left, Imm32 right)
{
load32WithUnalignedHalfWords(left, dataTempRegister);
// Be careful that the previous load32WithUnalignedHalfWords()
// uses immTempRegister.
// So, we need to put move() after load32WithUnalignedHalfWords().
move(right, immTempRegister);
return branch32(cond, dataTempRegister, immTempRegister);
}
Jump branch32(Condition cond, AbsoluteAddress left, RegisterID right)
{
load32(left.m_ptr, dataTempRegister);
return branch32(cond, dataTempRegister, right);
}
Jump branch32(Condition cond, AbsoluteAddress left, Imm32 right)
{
load32(left.m_ptr, dataTempRegister);
move(right, immTempRegister);
return branch32(cond, dataTempRegister, immTempRegister);
}
Jump branch16(Condition cond, BaseIndex left, RegisterID right)
{
load16(left, dataTempRegister);
return branch32(cond, dataTempRegister, right);
}
Jump branch16(Condition cond, BaseIndex left, Imm32 right)
{
ASSERT(!(right.m_value & 0xFFFF0000));
load16(left, dataTempRegister);
// Be careful that the previous load16() uses immTempRegister.
// So, we need to put move() after load16().
move(right, immTempRegister);
return branch32(cond, dataTempRegister, immTempRegister);
}
Jump branchTest32(Condition cond, RegisterID reg, RegisterID mask)
{
ASSERT((cond == Zero) || (cond == NonZero));
m_assembler.andInsn(cmpTempRegister, reg, mask);
if (cond == Zero)
return branchEqual(cmpTempRegister, MIPSRegisters::zero);
return branchNotEqual(cmpTempRegister, MIPSRegisters::zero);
}
Jump branchTest32(Condition cond, RegisterID reg, Imm32 mask = Imm32(-1))
{
ASSERT((cond == Zero) || (cond == NonZero));
if (mask.m_value == -1 && !m_fixedWidth) {
if (cond == Zero)
return branchEqual(reg, MIPSRegisters::zero);
return branchNotEqual(reg, MIPSRegisters::zero);
}
move(mask, immTempRegister);
return branchTest32(cond, reg, immTempRegister);
}
Jump branchTest32(Condition cond, Address address, Imm32 mask = Imm32(-1))
{
load32(address, dataTempRegister);
return branchTest32(cond, dataTempRegister, mask);
}
Jump branchTest32(Condition cond, BaseIndex address, Imm32 mask = Imm32(-1))
{
load32(address, dataTempRegister);
return branchTest32(cond, dataTempRegister, mask);
}
Jump jump()
{
return branchEqual(MIPSRegisters::zero, MIPSRegisters::zero);
}
void jump(RegisterID target)
{
m_assembler.jr(target);
m_assembler.nop();
}
void jump(Address address)
{
m_fixedWidth = true;
load32(address, MIPSRegisters::t9);
m_assembler.jr(MIPSRegisters::t9);
m_assembler.nop();
m_fixedWidth = false;
}
// Arithmetic control flow operations:
//
// This set of conditional branch operations branch based
// on the result of an arithmetic operation. The operation
// is performed as normal, storing the result.
//
// * jz operations branch if the result is zero.
// * jo operations branch if the (signed) arithmetic
// operation caused an overflow to occur.
Jump branchAdd32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
/*
move dest, dataTemp
xor cmpTemp, dataTemp, src
bltz cmpTemp, No_overflow # diff sign bit -> no overflow
addu dest, dataTemp, src
xor cmpTemp, dest, dataTemp
bgez cmpTemp, No_overflow # same sign big -> no overflow
nop
b Overflow
nop
nop
nop
nop
nop
No_overflow:
*/
move(dest, dataTempRegister);
m_assembler.xorInsn(cmpTempRegister, dataTempRegister, src);
m_assembler.bltz(cmpTempRegister, 10);
m_assembler.addu(dest, dataTempRegister, src);
m_assembler.xorInsn(cmpTempRegister, dest, dataTempRegister);
m_assembler.bgez(cmpTempRegister, 7);
m_assembler.nop();
return jump();
}
if (cond == Signed) {
add32(src, dest);
// Check if dest is negative.
m_assembler.slt(cmpTempRegister, dest, MIPSRegisters::zero);
return branchNotEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == Zero) {
add32(src, dest);
return branchEqual(dest, MIPSRegisters::zero);
}
if (cond == NonZero) {
add32(src, dest);
return branchNotEqual(dest, MIPSRegisters::zero);
}
ASSERT(0);
return Jump();
}
Jump branchAdd32(Condition cond, Imm32 imm, RegisterID dest)
{
move(imm, immTempRegister);
return branchAdd32(cond, immTempRegister, dest);
}
Jump branchMul32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
/*
mult src, dest
mfhi dataTemp
mflo dest
sra addrTemp, dest, 31
beq dataTemp, addrTemp, No_overflow # all sign bits (bit 63 to bit 31) are the same -> no overflow
nop
b Overflow
nop
nop
nop
nop
nop
No_overflow:
*/
m_assembler.mult(src, dest);
m_assembler.mfhi(dataTempRegister);
m_assembler.mflo(dest);
m_assembler.sra(addrTempRegister, dest, 31);
m_assembler.beq(dataTempRegister, addrTempRegister, 7);
m_assembler.nop();
return jump();
}
if (cond == Signed) {
mul32(src, dest);
// Check if dest is negative.
m_assembler.slt(cmpTempRegister, dest, MIPSRegisters::zero);
return branchNotEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == Zero) {
mul32(src, dest);
return branchEqual(dest, MIPSRegisters::zero);
}
if (cond == NonZero) {
mul32(src, dest);
return branchNotEqual(dest, MIPSRegisters::zero);
}
ASSERT(0);
return Jump();
}
Jump branchMul32(Condition cond, Imm32 imm, RegisterID src, RegisterID dest)
{
move(imm, immTempRegister);
move(src, dest);
return branchMul32(cond, immTempRegister, dest);
}
Jump branchSub32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
/*
move dest, dataTemp
xor cmpTemp, dataTemp, src
bgez cmpTemp, No_overflow # same sign bit -> no overflow
subu dest, dataTemp, src
xor cmpTemp, dest, dataTemp
bgez cmpTemp, No_overflow # same sign bit -> no overflow
nop
b Overflow
nop
nop
nop
nop
nop
No_overflow:
*/
move(dest, dataTempRegister);
m_assembler.xorInsn(cmpTempRegister, dataTempRegister, src);
m_assembler.bgez(cmpTempRegister, 10);
m_assembler.subu(dest, dataTempRegister, src);
m_assembler.xorInsn(cmpTempRegister, dest, dataTempRegister);
m_assembler.bgez(cmpTempRegister, 7);
m_assembler.nop();
return jump();
}
if (cond == Signed) {
sub32(src, dest);
// Check if dest is negative.
m_assembler.slt(cmpTempRegister, dest, MIPSRegisters::zero);
return branchNotEqual(cmpTempRegister, MIPSRegisters::zero);
}
if (cond == Zero) {
sub32(src, dest);
return branchEqual(dest, MIPSRegisters::zero);
}
if (cond == NonZero) {
sub32(src, dest);
return branchNotEqual(dest, MIPSRegisters::zero);
}
ASSERT(0);
return Jump();
}
Jump branchSub32(Condition cond, Imm32 imm, RegisterID dest)
{
move(imm, immTempRegister);
return branchSub32(cond, immTempRegister, dest);
}
// Miscellaneous operations:
void breakpoint()
{
m_assembler.bkpt();
}
Call nearCall()
{
/* We need two words for relaxation. */
m_assembler.nop();
m_assembler.nop();
m_assembler.jal();
m_assembler.nop();
return Call(m_assembler.newJmpSrc(), Call::LinkableNear);
}
Call call()
{
m_assembler.lui(MIPSRegisters::t9, 0);
m_assembler.ori(MIPSRegisters::t9, MIPSRegisters::t9, 0);
m_assembler.jalr(MIPSRegisters::t9);
m_assembler.nop();
return Call(m_assembler.newJmpSrc(), Call::Linkable);
}
Call call(RegisterID target)
{
m_assembler.jalr(target);
m_assembler.nop();
return Call(m_assembler.newJmpSrc(), Call::None);
}
Call call(Address address)
{
m_fixedWidth = true;
load32(address, MIPSRegisters::t9);
m_assembler.jalr(MIPSRegisters::t9);
m_assembler.nop();
m_fixedWidth = false;
return Call(m_assembler.newJmpSrc(), Call::None);
}
void ret()
{
m_assembler.jr(MIPSRegisters::ra);
m_assembler.nop();
}
void set32(Condition cond, RegisterID left, RegisterID right, RegisterID dest)
{
if (cond == Equal || cond == Zero) {
m_assembler.xorInsn(dest, left, right);
m_assembler.sltiu(dest, dest, 1);
} else if (cond == NotEqual || cond == NonZero) {
m_assembler.xorInsn(dest, left, right);
m_assembler.sltu(dest, MIPSRegisters::zero, dest);
} else if (cond == Above)
m_assembler.sltu(dest, right, left);
else if (cond == AboveOrEqual) {
m_assembler.sltu(dest, left, right);
m_assembler.xori(dest, dest, 1);
} else if (cond == Below)
m_assembler.sltu(dest, left, right);
else if (cond == BelowOrEqual) {
m_assembler.sltu(dest, right, left);
m_assembler.xori(dest, dest, 1);
} else if (cond == GreaterThan)
m_assembler.slt(dest, right, left);
else if (cond == GreaterThanOrEqual) {
m_assembler.slt(dest, left, right);
m_assembler.xori(dest, dest, 1);
} else if (cond == LessThan)
m_assembler.slt(dest, left, right);
else if (cond == LessThanOrEqual) {
m_assembler.slt(dest, right, left);
m_assembler.xori(dest, dest, 1);
} else if (cond == Overflow) {
/*
xor cmpTemp, left, right
bgez Done, cmpTemp # same sign bit -> no overflow
move dest, 0
subu cmpTemp, left, right
xor cmpTemp, cmpTemp, left # diff sign bit -> overflow
slt dest, cmpTemp, 0
Done:
*/
m_assembler.xorInsn(cmpTempRegister, left, right);
m_assembler.bgez(cmpTempRegister, 4);
m_assembler.move(dest, MIPSRegisters::zero);
m_assembler.subu(cmpTempRegister, left, right);
m_assembler.xorInsn(cmpTempRegister, cmpTempRegister, left);
m_assembler.slt(dest, cmpTempRegister, MIPSRegisters::zero);
} else if (cond == Signed) {
m_assembler.subu(dest, left, right);
// Check if the result is negative.
m_assembler.slt(dest, dest, MIPSRegisters::zero);
}
}
void set32(Condition cond, RegisterID left, Imm32 right, RegisterID dest)
{
move(right, immTempRegister);
set32(cond, left, immTempRegister, dest);
}
void setTest32(Condition cond, Address address, Imm32 mask, RegisterID dest)
{
ASSERT((cond == Zero) || (cond == NonZero));
load32(address, dataTempRegister);
if (mask.m_value == -1 && !m_fixedWidth) {
if (cond == Zero)
m_assembler.sltiu(dest, dataTempRegister, 1);
else
m_assembler.sltu(dest, MIPSRegisters::zero, dataTempRegister);
} else {
move(mask, immTempRegister);
m_assembler.andInsn(cmpTempRegister, dataTempRegister,
immTempRegister);
if (cond == Zero)
m_assembler.sltiu(dest, cmpTempRegister, 1);
else
m_assembler.sltu(dest, MIPSRegisters::zero, cmpTempRegister);
}
}
DataLabel32 moveWithPatch(Imm32 imm, RegisterID dest)
{
m_fixedWidth = true;
DataLabel32 label(this);
move(imm, dest);
m_fixedWidth = false;
return label;
}
DataLabelPtr moveWithPatch(ImmPtr initialValue, RegisterID dest)
{
m_fixedWidth = true;
DataLabelPtr label(this);
move(initialValue, dest);
m_fixedWidth = false;
return label;
}
Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
{
m_fixedWidth = true;
dataLabel = moveWithPatch(initialRightValue, immTempRegister);
Jump temp = branch32(cond, left, immTempRegister);
m_fixedWidth = false;
return temp;
}
Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
{
m_fixedWidth = true;
load32(left, dataTempRegister);
dataLabel = moveWithPatch(initialRightValue, immTempRegister);
Jump temp = branch32(cond, dataTempRegister, immTempRegister);
m_fixedWidth = false;
return temp;
}
DataLabelPtr storePtrWithPatch(ImmPtr initialValue, ImplicitAddress address)
{
m_fixedWidth = true;
DataLabelPtr dataLabel = moveWithPatch(initialValue, dataTempRegister);
store32(dataTempRegister, address);
m_fixedWidth = false;
return dataLabel;
}
DataLabelPtr storePtrWithPatch(ImplicitAddress address)
{
return storePtrWithPatch(ImmPtr(0), address);
}
Call tailRecursiveCall()
{
// Like a normal call, but don't update the returned address register
m_fixedWidth = true;
move(Imm32(0), MIPSRegisters::t9);
m_assembler.jr(MIPSRegisters::t9);
m_assembler.nop();
m_fixedWidth = false;
return Call(m_assembler.newJmpSrc(), Call::Linkable);
}
Call makeTailRecursiveCall(Jump oldJump)
{
oldJump.link(this);
return tailRecursiveCall();
}
void loadDouble(ImplicitAddress address, FPRegisterID dest)
{
#if WTF_MIPS_ISA(1)
/*
li addrTemp, address.offset
addu addrTemp, addrTemp, base
lwc1 dest, 0(addrTemp)
lwc1 dest+1, 4(addrTemp)
*/
move(Imm32(address.offset), addrTempRegister);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.lwc1(dest, addrTempRegister, 0);
m_assembler.lwc1(FPRegisterID(dest + 1), addrTempRegister, 4);
#else
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth) {
m_assembler.ldc1(dest, address.base, address.offset);
} else {
/*
lui addrTemp, (offset + 0x8000) >> 16
addu addrTemp, addrTemp, base
ldc1 dest, (offset & 0xffff)(addrTemp)
*/
m_assembler.lui(addrTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.ldc1(dest, addrTempRegister, address.offset);
}
#endif
}
void storeDouble(FPRegisterID src, ImplicitAddress address)
{
#if WTF_MIPS_ISA(1)
/*
li addrTemp, address.offset
addu addrTemp, addrTemp, base
swc1 dest, 0(addrTemp)
swc1 dest+1, 4(addrTemp)
*/
move(Imm32(address.offset), addrTempRegister);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.swc1(src, addrTempRegister, 0);
m_assembler.swc1(FPRegisterID(src + 1), addrTempRegister, 4);
#else
if (address.offset >= -32768 && address.offset <= 32767
&& !m_fixedWidth)
m_assembler.sdc1(src, address.base, address.offset);
else {
/*
lui addrTemp, (offset + 0x8000) >> 16
addu addrTemp, addrTemp, base
sdc1 src, (offset & 0xffff)(addrTemp)
*/
m_assembler.lui(addrTempRegister, (address.offset + 0x8000) >> 16);
m_assembler.addu(addrTempRegister, addrTempRegister, address.base);
m_assembler.sdc1(src, addrTempRegister, address.offset);
}
#endif
}
void addDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.addd(dest, dest, src);
}
void addDouble(Address src, FPRegisterID dest)
{
loadDouble(src, fpTempRegister);
m_assembler.addd(dest, dest, fpTempRegister);
}
void subDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.subd(dest, dest, src);
}
void subDouble(Address src, FPRegisterID dest)
{
loadDouble(src, fpTempRegister);
m_assembler.subd(dest, dest, fpTempRegister);
}
void mulDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.muld(dest, dest, src);
}
void mulDouble(Address src, FPRegisterID dest)
{
loadDouble(src, fpTempRegister);
m_assembler.muld(dest, dest, fpTempRegister);
}
void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.mtc1(src, fpTempRegister);
m_assembler.cvtdw(dest, fpTempRegister);
}
void insertRelaxationWords()
{
/* We need four words for relaxation. */
m_assembler.beq(MIPSRegisters::zero, MIPSRegisters::zero, 3); // Jump over nops;
m_assembler.nop();
m_assembler.nop();
m_assembler.nop();
}
Jump branchTrue()
{
m_assembler.appendJump();
m_assembler.bc1t();
m_assembler.nop();
insertRelaxationWords();
return Jump(m_assembler.newJmpSrc());
}
Jump branchFalse()
{
m_assembler.appendJump();
m_assembler.bc1f();
m_assembler.nop();
insertRelaxationWords();
return Jump(m_assembler.newJmpSrc());
}
Jump branchEqual(RegisterID rs, RegisterID rt)
{
m_assembler.appendJump();
m_assembler.beq(rs, rt, 0);
m_assembler.nop();
insertRelaxationWords();
return Jump(m_assembler.newJmpSrc());
}
Jump branchNotEqual(RegisterID rs, RegisterID rt)
{
m_assembler.appendJump();
m_assembler.bne(rs, rt, 0);
m_assembler.nop();
insertRelaxationWords();
return Jump(m_assembler.newJmpSrc());
}
Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
{
if (cond == DoubleEqual) {
m_assembler.ceqd(left, right);
return branchTrue();
}
if (cond == DoubleNotEqual) {
m_assembler.ceqd(left, right);
return branchFalse(); // false
}
if (cond == DoubleGreaterThan) {
m_assembler.cngtd(left, right);
return branchFalse(); // false
}
if (cond == DoubleGreaterThanOrEqual) {
m_assembler.cnged(right, left);
return branchFalse(); // false
}
if (cond == DoubleLessThan) {
m_assembler.cltd(left, right);
return branchTrue();
}
if (cond == DoubleLessThanOrEqual) {
m_assembler.cled(left, right);
return branchTrue();
}
if (cond == DoubleEqualOrUnordered) {
m_assembler.cueqd(left, right);
return branchTrue();
}
if (cond == DoubleGreaterThanOrUnordered) {
m_assembler.coled(left, right);
return branchFalse(); // false
}
if (cond == DoubleGreaterThanOrEqualOrUnordered) {
m_assembler.coltd(left, right);
return branchFalse(); // false
}
if (cond == DoubleLessThanOrUnordered) {
m_assembler.cultd(left, right);
return branchTrue();
}
if (cond == DoubleLessThanOrEqualOrUnordered) {
m_assembler.culed(left, right);
return branchTrue();
}
ASSERT(0);
return Jump();
}
// Truncates 'src' to an integer, and places the resulting 'dest'.
// If the result is not representable as a 32 bit value, branch.
// May also branch for some values that are representable in 32 bits
// (specifically, in this case, INT_MAX 0x7fffffff).
Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest)
{
m_assembler.truncwd(fpTempRegister, src);
m_assembler.mfc1(dest, fpTempRegister);
return branch32(Equal, dest, Imm32(0x7fffffff));
}
private:
// If m_fixedWidth is true, we will generate a fixed number of instructions.
// Otherwise, we can emit any number of instructions.
bool m_fixedWidth;
friend class LinkBuffer;
friend class RepatchBuffer;
static void linkCall(void* code, Call call, FunctionPtr function)
{
MIPSAssembler::linkCall(code, call.m_jmp, function.value());
}
static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
{
MIPSAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
static void repatchCall(CodeLocationCall call, FunctionPtr destination)
{
MIPSAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
};
}
#endif // ENABLE(ASSEMBLER) && CPU(MIPS)
#endif // MacroAssemblerMIPS_h