blob: 10a51df27c509db5232654dbd20dee3bd38704b7 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtXmlPatterns module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qboolean_p.h"
#include "qbuiltintypes_p.h"
#include "qcommonsequencetypes_p.h"
#include "qemptysequence_p.h"
#include "qgenericsequencetype_p.h"
#include "qliteral_p.h"
#include "qpatternistlocale_p.h"
#include "qschemanumeric_p.h"
#include "quntypedatomicconverter_p.h"
#include "qarithmeticexpression_p.h"
QT_BEGIN_NAMESPACE
using namespace QPatternist;
ArithmeticExpression::ArithmeticExpression(const Expression::Ptr &op1,
const AtomicMathematician::Operator op,
const Expression::Ptr &op2) : PairContainer(op1, op2)
, m_op(op)
, m_isCompat(false)
{
}
Item ArithmeticExpression::evaluateSingleton(const DynamicContext::Ptr &context) const
{
const Item op1(m_operand1->evaluateSingleton(context));
if(!op1)
return Item();
const Item op2(m_operand2->evaluateSingleton(context));
if(!op2)
return Item();
return flexiblyCalculate(op1, m_op, op2, m_mather, context, this,
ReportContext::XPTY0004, m_isCompat);
}
/**
* Since ArithmeticExpression::flexiblyCalculate() creates Expression instances
* at runtime, we have the problem of having SourceLocationReflections for them
* in the case that we run into a runtime error, since the locations are always
* located at compile time.
*
* This class simply delegates the reflection over to an existing expression.
*
* I only managed to trigger this with "current() + 1", where current()
* evaluates to an invalid representation for @c xs:double.
*
* @since 4.5
* @author Frans Englich <frans.englich@nokia.com>
*/
class DelegatingReflectionExpression : public Literal
{
public:
DelegatingReflectionExpression(const Item &item,
const SourceLocationReflection *const reflection) : Literal(item)
, m_reflection(reflection)
{
}
virtual const SourceLocationReflection *actualReflection() const
{
return m_reflection;
}
private:
const SourceLocationReflection *const m_reflection;
};
Item ArithmeticExpression::flexiblyCalculate(const Item &op1,
const AtomicMathematician::Operator op,
const Item &op2,
const AtomicMathematician::Ptr &mather,
const DynamicContext::Ptr &context,
const SourceLocationReflection *const reflection,
const ReportContext::ErrorCode code,
const bool isCompat)
{
if(mather)
return mather->calculate(op1, op, op2, context);
/* This is a very heavy code path. */
Expression::Ptr a1(new DelegatingReflectionExpression(op1, reflection));
Expression::Ptr a2(new DelegatingReflectionExpression(op2, reflection));
const AtomicMathematician::Ptr ingela(fetchMathematician(a1, a2, op, true, context, reflection, code, isCompat));
return ingela->calculate(a1->evaluateSingleton(context),
op,
a2->evaluateSingleton(context),
context);
}
Expression::Ptr ArithmeticExpression::typeCheck(const StaticContext::Ptr &context,
const SequenceType::Ptr &reqType)
{
m_isCompat = context->compatModeEnabled();
const Expression::Ptr me(PairContainer::typeCheck(context, reqType));
const ItemType::Ptr t1(m_operand1->staticType()->itemType());
const ItemType::Ptr t2(m_operand2->staticType()->itemType());
if(*CommonSequenceTypes::Empty == *t1 ||
*CommonSequenceTypes::Empty == *t2)
{
return EmptySequence::create(this, context);
}
if(*BuiltinTypes::xsAnyAtomicType == *t1 ||
*BuiltinTypes::xsAnyAtomicType == *t2 ||
*BuiltinTypes::numeric == *t1 ||
*BuiltinTypes::numeric == *t2)
{
/* The static type of (at least) one of the operands could not
* be narrowed further than xs:anyAtomicType, so we do the operator
* lookup at runtime. */
return me;
}
m_mather = fetchMathematician(m_operand1, m_operand2, m_op, true, context, this,
ReportContext::XPTY0004, m_isCompat);
return me;
}
AtomicMathematician::Ptr
ArithmeticExpression::fetchMathematician(Expression::Ptr &op1,
Expression::Ptr &op2,
const AtomicMathematician::Operator op,
const bool issueError,
const ReportContext::Ptr &context,
const SourceLocationReflection *const reflection,
const ReportContext::ErrorCode code,
const bool isCompat)
{
ItemType::Ptr t1(op1->staticType()->itemType());
ItemType::Ptr t2(op2->staticType()->itemType());
if(BuiltinTypes::xsUntypedAtomic->xdtTypeMatches(t1)
|| (isCompat && (BuiltinTypes::xsString->xdtTypeMatches(t1)
|| BuiltinTypes::xsDecimal->xdtTypeMatches(t1))))
{
op1 = Expression::Ptr(new UntypedAtomicConverter(op1, BuiltinTypes::xsDouble));
/* The types might have changed, reload. */
t1 = op1->staticType()->itemType();
}
if(BuiltinTypes::xsUntypedAtomic->xdtTypeMatches(t2)
|| (isCompat && (BuiltinTypes::xsString->xdtTypeMatches(t1)
|| BuiltinTypes::xsDecimal->xdtTypeMatches(t1))))
{
op2 = Expression::Ptr(new UntypedAtomicConverter(op2, BuiltinTypes::xsDouble));
/* The types might have changed, reload. */
t2 = op2->staticType()->itemType();
}
const AtomicMathematicianLocator::Ptr locator
(static_cast<const AtomicType *>(t1.data())->mathematicianLocator());
if(!locator)
{
if(!issueError)
return AtomicMathematician::Ptr();
context->error(QtXmlPatterns::tr(
"Operator %1 cannot be used on type %2.")
.arg(formatKeyword(AtomicMathematician::displayName(op)))
.arg(formatType(context->namePool(), t1)),
code, reflection);
return AtomicMathematician::Ptr();
}
const AtomicMathematician::Ptr comp
(static_cast<const AtomicType *>(t2.data())->accept(locator, op, reflection));
if(comp)
return comp;
if(!issueError)
return AtomicMathematician::Ptr();
context->error(QtXmlPatterns::tr("Operator %1 cannot be used on "
"atomic values of type %2 and %3.")
.arg(formatKeyword(AtomicMathematician::displayName(op)))
.arg(formatType(context->namePool(), t1))
.arg(formatType(context->namePool(), t2)),
code, reflection);
return AtomicMathematician::Ptr();
}
SequenceType::Ptr ArithmeticExpression::staticType() const
{
Cardinality card;
/* These variables are important because they ensure staticType() only
* gets called once from this function. Before, this lead to strange
* semi-infinite recursion involving many arithmetic expressions. */
const SequenceType::Ptr st1(m_operand1->staticType());
const SequenceType::Ptr st2(m_operand2->staticType());
if(st1->cardinality().allowsEmpty() ||
st2->cardinality().allowsEmpty())
{
card = Cardinality::zeroOrOne();
}
else
card = Cardinality::exactlyOne();
if(m_op == AtomicMathematician::IDiv)
return makeGenericSequenceType(BuiltinTypes::xsInteger, card);
const ItemType::Ptr t1(st1->itemType());
const ItemType::Ptr t2(st2->itemType());
ItemType::Ptr returnType;
/* Please, make this beautiful? */
if(BuiltinTypes::xsTime->xdtTypeMatches(t1) ||
BuiltinTypes::xsDate->xdtTypeMatches(t1) ||
BuiltinTypes::xsDateTime->xdtTypeMatches(t1))
{
if(BuiltinTypes::xsDuration->xdtTypeMatches(t2))
returnType = t1;
else
returnType = BuiltinTypes::xsDayTimeDuration;
}
else if(BuiltinTypes::xsYearMonthDuration->xdtTypeMatches(t1))
{
if(m_op == AtomicMathematician::Div &&
BuiltinTypes::xsYearMonthDuration->xdtTypeMatches(t2))
{
returnType = BuiltinTypes::xsDecimal;
}
else if(BuiltinTypes::numeric->xdtTypeMatches(t2))
returnType = BuiltinTypes::xsYearMonthDuration;
else
returnType = t2;
}
else if(BuiltinTypes::xsYearMonthDuration->xdtTypeMatches(t2))
{
returnType = BuiltinTypes::xsYearMonthDuration;
}
else if(BuiltinTypes::xsDayTimeDuration->xdtTypeMatches(t1))
{
if(m_op == AtomicMathematician::Div &&
BuiltinTypes::xsDayTimeDuration->xdtTypeMatches(t2))
{
returnType = BuiltinTypes::xsDecimal;
}
else if(BuiltinTypes::numeric->xdtTypeMatches(t2))
returnType = BuiltinTypes::xsDayTimeDuration;
else
returnType = t2;
}
else if(BuiltinTypes::xsDayTimeDuration->xdtTypeMatches(t2))
{
returnType = BuiltinTypes::xsDayTimeDuration;
}
else if(BuiltinTypes::xsDouble->xdtTypeMatches(t1) ||
BuiltinTypes::xsDouble->xdtTypeMatches(t2))
{
returnType = BuiltinTypes::xsDouble;
}
else if(BuiltinTypes::xsFloat->xdtTypeMatches(t1) ||
BuiltinTypes::xsFloat->xdtTypeMatches(t2))
{
if(m_isCompat)
returnType = BuiltinTypes::xsFloat;
else
returnType = BuiltinTypes::xsDouble;
}
else if(BuiltinTypes::xsInteger->xdtTypeMatches(t1) &&
BuiltinTypes::xsInteger->xdtTypeMatches(t2))
{
if(m_isCompat)
returnType = BuiltinTypes::xsDouble;
else
{
/* "A div B numeric numeric op:numeric-divide(A, B)
* numeric; but xs:decimal if both operands are xs:integer" */
if(m_op == AtomicMathematician::Div)
returnType = BuiltinTypes::xsDecimal;
else
returnType = BuiltinTypes::xsInteger;
}
}
else if(m_isCompat && (BuiltinTypes::xsInteger->xdtTypeMatches(t1) &&
BuiltinTypes::xsInteger->xdtTypeMatches(t2)))
{
returnType = BuiltinTypes::xsDouble;
}
else
{
/* If typeCheck() has been called, our operands conform to expectedOperandTypes(), and
* the types are hence either xs:decimals, or xs:anyAtomicType(meaning the static type could
* not be inferred), or empty-sequence(). So we use the union of the two types. The combinations
* could also be wrong.*/
returnType = t1 | t2;
/* However, if we're called before typeCheck(), we could potentially have nodes, so we need to make
* sure that the type is at least atomic. */
if(!BuiltinTypes::xsAnyAtomicType->xdtTypeMatches(returnType))
returnType = BuiltinTypes::xsAnyAtomicType;
}
return makeGenericSequenceType(returnType, card);
}
SequenceType::List ArithmeticExpression::expectedOperandTypes() const
{
SequenceType::List result;
result.append(CommonSequenceTypes::ZeroOrOneAtomicType);
result.append(CommonSequenceTypes::ZeroOrOneAtomicType);
return result;
}
ExpressionVisitorResult::Ptr ArithmeticExpression::accept(const ExpressionVisitor::Ptr &visitor) const
{
return visitor->visit(this);
}
QT_END_NAMESPACE