blob: 98d2ab782456a2783ba4333bbf74fc0fc2c5ef40 [file] [log] [blame]
/*
* Copyright (C) 2006 Zack Rusin <zack@kde.org>
* 2006 Rob Buis <buis@kde.org>
* 2009, 2010 Dirk Schulze <krit@webkit.org>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "Path.h"
#include "AffineTransform.h"
#include "FloatRect.h"
#include "GraphicsContext.h"
#include "ImageBuffer.h"
#include "PlatformString.h"
#include "StrokeStyleApplier.h"
#include <QPainterPath>
#include <QTransform>
#include <QString>
#include <wtf/OwnPtr.h>
#define _USE_MATH_DEFINES
#include <math.h>
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
namespace WebCore {
Path::Path()
{
}
Path::~Path()
{
}
Path::Path(const Path& other)
: m_path(other.m_path)
{
}
Path& Path::operator=(const Path& other)
{
m_path = other.m_path;
return *this;
}
static inline bool areCollinear(const QPointF& a, const QPointF& b, const QPointF& c)
{
// Solved from comparing the slopes of a to b and b to c: (ay-by)/(ax-bx) == (cy-by)/(cx-bx)
return qFuzzyCompare((c.y() - b.y()) * (a.x() - b.x()), (a.y() - b.y()) * (c.x() - b.x()));
}
static inline bool withinRange(qreal p, qreal a, qreal b)
{
return (p >= a && p <= b) || (p >= b && p <= a);
}
// Check whether a point is on the border
static bool isPointOnPathBorder(const QPolygonF& border, const QPointF& p)
{
QPointF p1 = border.at(0);
QPointF p2;
for (int i = 1; i < border.size(); ++i) {
p2 = border.at(i);
if (areCollinear(p, p1, p2)
// Once we know that the points are collinear we
// only need to check one of the coordinates
&& (qAbs(p2.x() - p1.x()) > qAbs(p2.y() - p1.y()) ?
withinRange(p.x(), p1.x(), p2.x()) :
withinRange(p.y(), p1.y(), p2.y()))) {
return true;
}
p1 = p2;
}
return false;
}
bool Path::contains(const FloatPoint& point, WindRule rule) const
{
Qt::FillRule savedRule = m_path.fillRule();
const_cast<QPainterPath*>(&m_path)->setFillRule(rule == RULE_EVENODD ? Qt::OddEvenFill : Qt::WindingFill);
bool contains = m_path.contains(point);
if (!contains) {
// check whether the point is on the border
contains = isPointOnPathBorder(m_path.toFillPolygon(), point);
}
const_cast<QPainterPath*>(&m_path)->setFillRule(savedRule);
return contains;
}
bool Path::strokeContains(StrokeStyleApplier* applier, const FloatPoint& point) const
{
ASSERT(applier);
// FIXME: We should try to use a 'shared Context' instead of creating a new ImageBuffer
// on each call.
OwnPtr<ImageBuffer> scratchImage = ImageBuffer::create(IntSize(1, 1));
GraphicsContext* gc = scratchImage->context();
QPainterPathStroker stroke;
applier->strokeStyle(gc);
QPen pen = gc->pen();
stroke.setWidth(pen.widthF());
stroke.setCapStyle(pen.capStyle());
stroke.setJoinStyle(pen.joinStyle());
stroke.setMiterLimit(pen.miterLimit());
stroke.setDashPattern(pen.dashPattern());
stroke.setDashOffset(pen.dashOffset());
return stroke.createStroke(m_path).contains(point);
}
void Path::translate(const FloatSize& size)
{
QTransform matrix;
matrix.translate(size.width(), size.height());
m_path = m_path * matrix;
}
FloatRect Path::boundingRect() const
{
return m_path.boundingRect();
}
FloatRect Path::strokeBoundingRect(StrokeStyleApplier* applier)
{
// FIXME: We should try to use a 'shared Context' instead of creating a new ImageBuffer
// on each call.
OwnPtr<ImageBuffer> scratchImage = ImageBuffer::create(IntSize(1, 1));
GraphicsContext* gc = scratchImage->context();
QPainterPathStroker stroke;
if (applier) {
applier->strokeStyle(gc);
QPen pen = gc->pen();
stroke.setWidth(pen.widthF());
stroke.setCapStyle(pen.capStyle());
stroke.setJoinStyle(pen.joinStyle());
stroke.setMiterLimit(pen.miterLimit());
stroke.setDashPattern(pen.dashPattern());
stroke.setDashOffset(pen.dashOffset());
}
return stroke.createStroke(m_path).boundingRect();
}
void Path::moveTo(const FloatPoint& point)
{
m_path.moveTo(point);
}
void Path::addLineTo(const FloatPoint& p)
{
m_path.lineTo(p);
}
void Path::addQuadCurveTo(const FloatPoint& cp, const FloatPoint& p)
{
m_path.quadTo(cp, p);
}
void Path::addBezierCurveTo(const FloatPoint& cp1, const FloatPoint& cp2, const FloatPoint& p)
{
m_path.cubicTo(cp1, cp2, p);
}
void Path::addArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius)
{
FloatPoint p0(m_path.currentPosition());
if ((p1.x() == p0.x() && p1.y() == p0.y()) || (p1.x() == p2.x() && p1.y() == p2.y()) || radius == 0.f) {
m_path.lineTo(p1);
return;
}
FloatPoint p1p0((p0.x() - p1.x()), (p0.y() - p1.y()));
FloatPoint p1p2((p2.x() - p1.x()), (p2.y() - p1.y()));
float p1p0_length = sqrtf(p1p0.x() * p1p0.x() + p1p0.y() * p1p0.y());
float p1p2_length = sqrtf(p1p2.x() * p1p2.x() + p1p2.y() * p1p2.y());
double cos_phi = (p1p0.x() * p1p2.x() + p1p0.y() * p1p2.y()) / (p1p0_length * p1p2_length);
// The points p0, p1, and p2 are on the same straight line (HTML5, 4.8.11.1.8)
// We could have used areCollinear() here, but since we're reusing
// the variables computed above later on we keep this logic.
if (qFuzzyCompare(qAbs(cos_phi), 1.0)) {
m_path.lineTo(p1);
return;
}
float tangent = radius / tan(acos(cos_phi) / 2);
float factor_p1p0 = tangent / p1p0_length;
FloatPoint t_p1p0((p1.x() + factor_p1p0 * p1p0.x()), (p1.y() + factor_p1p0 * p1p0.y()));
FloatPoint orth_p1p0(p1p0.y(), -p1p0.x());
float orth_p1p0_length = sqrt(orth_p1p0.x() * orth_p1p0.x() + orth_p1p0.y() * orth_p1p0.y());
float factor_ra = radius / orth_p1p0_length;
// angle between orth_p1p0 and p1p2 to get the right vector orthographic to p1p0
double cos_alpha = (orth_p1p0.x() * p1p2.x() + orth_p1p0.y() * p1p2.y()) / (orth_p1p0_length * p1p2_length);
if (cos_alpha < 0.f)
orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
FloatPoint p((t_p1p0.x() + factor_ra * orth_p1p0.x()), (t_p1p0.y() + factor_ra * orth_p1p0.y()));
// calculate angles for addArc
orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
float sa = acos(orth_p1p0.x() / orth_p1p0_length);
if (orth_p1p0.y() < 0.f)
sa = 2 * piDouble - sa;
// anticlockwise logic
bool anticlockwise = false;
float factor_p1p2 = tangent / p1p2_length;
FloatPoint t_p1p2((p1.x() + factor_p1p2 * p1p2.x()), (p1.y() + factor_p1p2 * p1p2.y()));
FloatPoint orth_p1p2((t_p1p2.x() - p.x()), (t_p1p2.y() - p.y()));
float orth_p1p2_length = sqrtf(orth_p1p2.x() * orth_p1p2.x() + orth_p1p2.y() * orth_p1p2.y());
float ea = acos(orth_p1p2.x() / orth_p1p2_length);
if (orth_p1p2.y() < 0)
ea = 2 * piDouble - ea;
if ((sa > ea) && ((sa - ea) < piDouble))
anticlockwise = true;
if ((sa < ea) && ((ea - sa) > piDouble))
anticlockwise = true;
m_path.lineTo(t_p1p0);
addArc(p, radius, sa, ea, anticlockwise);
}
void Path::closeSubpath()
{
m_path.closeSubpath();
}
#define DEGREES(t) ((t) * 180.0 / M_PI)
void Path::addArc(const FloatPoint& p, float r, float sar, float ear, bool anticlockwise)
{
qreal xc = p.x();
qreal yc = p.y();
qreal radius = r;
//### HACK
// In Qt we don't switch the coordinate system for degrees
// and still use the 0,0 as bottom left for degrees so we need
// to switch
sar = -sar;
ear = -ear;
anticlockwise = !anticlockwise;
//end hack
float sa = DEGREES(sar);
float ea = DEGREES(ear);
double span = 0;
double xs = xc - radius;
double ys = yc - radius;
double width = radius*2;
double height = radius*2;
if (!anticlockwise && (ea < sa))
span += 360;
else if (anticlockwise && (sa < ea))
span -= 360;
// this is also due to switched coordinate system
// we would end up with a 0 span instead of 360
if (!(qFuzzyCompare(span + (ea - sa) + 1, 1.0) &&
qFuzzyCompare(qAbs(span), 360.0))) {
span += ea - sa;
}
// If the path is empty, move to where the arc will start to avoid painting a line from (0,0)
// NOTE: QPainterPath::isEmpty() won't work here since it ignores a lone MoveToElement
if (!m_path.elementCount())
m_path.arcMoveTo(xs, ys, width, height, sa);
m_path.arcTo(xs, ys, width, height, sa, span);
}
void Path::addRect(const FloatRect& r)
{
m_path.addRect(r.x(), r.y(), r.width(), r.height());
}
void Path::addEllipse(const FloatRect& r)
{
m_path.addEllipse(r.x(), r.y(), r.width(), r.height());
}
void Path::clear()
{
m_path = QPainterPath();
}
bool Path::isEmpty() const
{
// Don't use QPainterPath::isEmpty(), as that also returns true if there's only
// one initial MoveTo element in the path.
return !m_path.elementCount();
}
bool Path::hasCurrentPoint() const
{
return !isEmpty();
}
String Path::debugString() const
{
QString ret;
for (int i = 0; i < m_path.elementCount(); ++i) {
const QPainterPath::Element &cur = m_path.elementAt(i);
switch (cur.type) {
case QPainterPath::MoveToElement:
ret += QString(QLatin1String("M%1,%2 ")).arg(cur.x, 0, 'f', 2).arg(cur.y, 0, 'f', 2);
break;
case QPainterPath::LineToElement:
ret += QString(QLatin1String("L%1,%2 ")).arg(cur.x, 0, 'f', 2).arg(cur.y, 0, 'f', 2);
break;
case QPainterPath::CurveToElement:
{
const QPainterPath::Element &c1 = m_path.elementAt(i + 1);
const QPainterPath::Element &c2 = m_path.elementAt(i + 2);
Q_ASSERT(c1.type == QPainterPath::CurveToDataElement);
Q_ASSERT(c2.type == QPainterPath::CurveToDataElement);
ret += QString(QLatin1String("C%1,%2,%3,%4,%5,%6 ")).arg(cur.x, 0, 'f', 2).arg(cur.y, 0, 'f', 2).arg(c1.x, 0, 'f', 2)
.arg(c1.y, 0, 'f', 2).arg(c2.x, 0, 'f', 2).arg(c2.y, 0, 'f', 2);
i += 2;
break;
}
case QPainterPath::CurveToDataElement:
Q_ASSERT(false);
break;
}
}
return ret.trimmed();
}
void Path::apply(void* info, PathApplierFunction function) const
{
PathElement pelement;
FloatPoint points[3];
pelement.points = points;
for (int i = 0; i < m_path.elementCount(); ++i) {
const QPainterPath::Element& cur = m_path.elementAt(i);
switch (cur.type) {
case QPainterPath::MoveToElement:
pelement.type = PathElementMoveToPoint;
pelement.points[0] = QPointF(cur);
function(info, &pelement);
break;
case QPainterPath::LineToElement:
pelement.type = PathElementAddLineToPoint;
pelement.points[0] = QPointF(cur);
function(info, &pelement);
break;
case QPainterPath::CurveToElement:
{
const QPainterPath::Element& c1 = m_path.elementAt(i + 1);
const QPainterPath::Element& c2 = m_path.elementAt(i + 2);
Q_ASSERT(c1.type == QPainterPath::CurveToDataElement);
Q_ASSERT(c2.type == QPainterPath::CurveToDataElement);
pelement.type = PathElementAddCurveToPoint;
pelement.points[0] = QPointF(cur);
pelement.points[1] = QPointF(c1);
pelement.points[2] = QPointF(c2);
function(info, &pelement);
i += 2;
break;
}
case QPainterPath::CurveToDataElement:
Q_ASSERT(false);
}
}
}
void Path::transform(const AffineTransform& transform)
{
m_path = QTransform(transform).map(m_path);
}
}
// vim: ts=4 sw=4 et