blob: 0b73cb23d0a184b9f8ec6c3139b8fd0e098903f3 [file] [log] [blame]
/*
* libqos PCI bindings
*
* Copyright IBM, Corp. 2012-2013
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "libqos/pci.h"
#include "hw/pci/pci_regs.h"
#include "qemu/host-utils.h"
void qpci_device_foreach(QPCIBus *bus, int vendor_id, int device_id,
void (*func)(QPCIDevice *dev, int devfn, void *data),
void *data)
{
int slot;
for (slot = 0; slot < 32; slot++) {
int fn;
for (fn = 0; fn < 8; fn++) {
QPCIDevice *dev;
dev = qpci_device_find(bus, QPCI_DEVFN(slot, fn));
if (!dev) {
continue;
}
if (vendor_id != -1 &&
qpci_config_readw(dev, PCI_VENDOR_ID) != vendor_id) {
g_free(dev);
continue;
}
if (device_id != -1 &&
qpci_config_readw(dev, PCI_DEVICE_ID) != device_id) {
g_free(dev);
continue;
}
func(dev, QPCI_DEVFN(slot, fn), data);
}
}
}
QPCIDevice *qpci_device_find(QPCIBus *bus, int devfn)
{
QPCIDevice *dev;
dev = g_malloc0(sizeof(*dev));
dev->bus = bus;
dev->devfn = devfn;
if (qpci_config_readw(dev, PCI_VENDOR_ID) == 0xFFFF) {
g_free(dev);
return NULL;
}
return dev;
}
void qpci_device_enable(QPCIDevice *dev)
{
uint16_t cmd;
/* FIXME -- does this need to be a bus callout? */
cmd = qpci_config_readw(dev, PCI_COMMAND);
cmd |= PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
qpci_config_writew(dev, PCI_COMMAND, cmd);
/* Verify the bits are now set. */
cmd = qpci_config_readw(dev, PCI_COMMAND);
g_assert_cmphex(cmd & PCI_COMMAND_IO, ==, PCI_COMMAND_IO);
g_assert_cmphex(cmd & PCI_COMMAND_MEMORY, ==, PCI_COMMAND_MEMORY);
g_assert_cmphex(cmd & PCI_COMMAND_MASTER, ==, PCI_COMMAND_MASTER);
}
uint8_t qpci_find_capability(QPCIDevice *dev, uint8_t id)
{
uint8_t cap;
uint8_t addr = qpci_config_readb(dev, PCI_CAPABILITY_LIST);
do {
cap = qpci_config_readb(dev, addr);
if (cap != id) {
addr = qpci_config_readb(dev, addr + PCI_CAP_LIST_NEXT);
}
} while (cap != id && addr != 0);
return addr;
}
void qpci_msix_enable(QPCIDevice *dev)
{
uint8_t addr;
uint16_t val;
uint32_t table;
uint8_t bir_table;
uint8_t bir_pba;
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX);
g_assert_cmphex(addr, !=, 0);
val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
qpci_config_writew(dev, addr + PCI_MSIX_FLAGS, val | PCI_MSIX_FLAGS_ENABLE);
table = qpci_config_readl(dev, addr + PCI_MSIX_TABLE);
bir_table = table & PCI_MSIX_FLAGS_BIRMASK;
dev->msix_table_bar = qpci_iomap(dev, bir_table, NULL);
dev->msix_table_off = table & ~PCI_MSIX_FLAGS_BIRMASK;
table = qpci_config_readl(dev, addr + PCI_MSIX_PBA);
bir_pba = table & PCI_MSIX_FLAGS_BIRMASK;
if (bir_pba != bir_table) {
dev->msix_pba_bar = qpci_iomap(dev, bir_pba, NULL);
} else {
dev->msix_pba_bar = dev->msix_table_bar;
}
dev->msix_pba_off = table & ~PCI_MSIX_FLAGS_BIRMASK;
dev->msix_enabled = true;
}
void qpci_msix_disable(QPCIDevice *dev)
{
uint8_t addr;
uint16_t val;
g_assert(dev->msix_enabled);
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX);
g_assert_cmphex(addr, !=, 0);
val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
qpci_config_writew(dev, addr + PCI_MSIX_FLAGS,
val & ~PCI_MSIX_FLAGS_ENABLE);
if (dev->msix_pba_bar.addr != dev->msix_table_bar.addr) {
qpci_iounmap(dev, dev->msix_pba_bar);
}
qpci_iounmap(dev, dev->msix_table_bar);
dev->msix_enabled = 0;
dev->msix_table_off = 0;
dev->msix_pba_off = 0;
}
bool qpci_msix_pending(QPCIDevice *dev, uint16_t entry)
{
uint32_t pba_entry;
uint8_t bit_n = entry % 32;
uint64_t off = (entry / 32) * PCI_MSIX_ENTRY_SIZE / 4;
g_assert(dev->msix_enabled);
pba_entry = qpci_io_readl(dev, dev->msix_pba_bar, dev->msix_pba_off + off);
qpci_io_writel(dev, dev->msix_pba_bar, dev->msix_pba_off + off,
pba_entry & ~(1 << bit_n));
return (pba_entry & (1 << bit_n)) != 0;
}
bool qpci_msix_masked(QPCIDevice *dev, uint16_t entry)
{
uint8_t addr;
uint16_t val;
uint64_t vector_off = dev->msix_table_off + entry * PCI_MSIX_ENTRY_SIZE;
g_assert(dev->msix_enabled);
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX);
g_assert_cmphex(addr, !=, 0);
val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
if (val & PCI_MSIX_FLAGS_MASKALL) {
return true;
} else {
return (qpci_io_readl(dev, dev->msix_table_bar,
vector_off + PCI_MSIX_ENTRY_VECTOR_CTRL)
& PCI_MSIX_ENTRY_CTRL_MASKBIT) != 0;
}
}
uint16_t qpci_msix_table_size(QPCIDevice *dev)
{
uint8_t addr;
uint16_t control;
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX);
g_assert_cmphex(addr, !=, 0);
control = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
return (control & PCI_MSIX_FLAGS_QSIZE) + 1;
}
uint8_t qpci_config_readb(QPCIDevice *dev, uint8_t offset)
{
return dev->bus->config_readb(dev->bus, dev->devfn, offset);
}
uint16_t qpci_config_readw(QPCIDevice *dev, uint8_t offset)
{
return dev->bus->config_readw(dev->bus, dev->devfn, offset);
}
uint32_t qpci_config_readl(QPCIDevice *dev, uint8_t offset)
{
return dev->bus->config_readl(dev->bus, dev->devfn, offset);
}
void qpci_config_writeb(QPCIDevice *dev, uint8_t offset, uint8_t value)
{
dev->bus->config_writeb(dev->bus, dev->devfn, offset, value);
}
void qpci_config_writew(QPCIDevice *dev, uint8_t offset, uint16_t value)
{
dev->bus->config_writew(dev->bus, dev->devfn, offset, value);
}
void qpci_config_writel(QPCIDevice *dev, uint8_t offset, uint32_t value)
{
dev->bus->config_writel(dev->bus, dev->devfn, offset, value);
}
uint8_t qpci_io_readb(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
if (token.addr < QPCI_PIO_LIMIT) {
return dev->bus->pio_readb(dev->bus, token.addr + off);
} else {
uint8_t val;
dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return val;
}
}
uint16_t qpci_io_readw(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
if (token.addr < QPCI_PIO_LIMIT) {
return dev->bus->pio_readw(dev->bus, token.addr + off);
} else {
uint16_t val;
dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return le16_to_cpu(val);
}
}
uint32_t qpci_io_readl(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
if (token.addr < QPCI_PIO_LIMIT) {
return dev->bus->pio_readl(dev->bus, token.addr + off);
} else {
uint32_t val;
dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return le32_to_cpu(val);
}
}
uint64_t qpci_io_readq(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
if (token.addr < QPCI_PIO_LIMIT) {
return dev->bus->pio_readq(dev->bus, token.addr + off);
} else {
uint64_t val;
dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return le64_to_cpu(val);
}
}
void qpci_io_writeb(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint8_t value)
{
if (token.addr < QPCI_PIO_LIMIT) {
dev->bus->pio_writeb(dev->bus, token.addr + off, value);
} else {
dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_io_writew(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint16_t value)
{
if (token.addr < QPCI_PIO_LIMIT) {
dev->bus->pio_writew(dev->bus, token.addr + off, value);
} else {
value = cpu_to_le16(value);
dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_io_writel(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint32_t value)
{
if (token.addr < QPCI_PIO_LIMIT) {
dev->bus->pio_writel(dev->bus, token.addr + off, value);
} else {
value = cpu_to_le32(value);
dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_io_writeq(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint64_t value)
{
if (token.addr < QPCI_PIO_LIMIT) {
dev->bus->pio_writeq(dev->bus, token.addr + off, value);
} else {
value = cpu_to_le64(value);
dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_memread(QPCIDevice *dev, QPCIBar token, uint64_t off,
void *buf, size_t len)
{
g_assert(token.addr >= QPCI_PIO_LIMIT);
dev->bus->memread(dev->bus, token.addr + off, buf, len);
}
void qpci_memwrite(QPCIDevice *dev, QPCIBar token, uint64_t off,
const void *buf, size_t len)
{
g_assert(token.addr >= QPCI_PIO_LIMIT);
dev->bus->memwrite(dev->bus, token.addr + off, buf, len);
}
QPCIBar qpci_iomap(QPCIDevice *dev, int barno, uint64_t *sizeptr)
{
QPCIBus *bus = dev->bus;
static const int bar_reg_map[] = {
PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3, PCI_BASE_ADDRESS_4, PCI_BASE_ADDRESS_5,
};
QPCIBar bar;
int bar_reg;
uint32_t addr, size;
uint32_t io_type;
uint64_t loc;
g_assert(barno >= 0 && barno <= 5);
bar_reg = bar_reg_map[barno];
qpci_config_writel(dev, bar_reg, 0xFFFFFFFF);
addr = qpci_config_readl(dev, bar_reg);
io_type = addr & PCI_BASE_ADDRESS_SPACE;
if (io_type == PCI_BASE_ADDRESS_SPACE_IO) {
addr &= PCI_BASE_ADDRESS_IO_MASK;
} else {
addr &= PCI_BASE_ADDRESS_MEM_MASK;
}
g_assert(addr); /* Must have *some* size bits */
size = 1U << ctz32(addr);
if (sizeptr) {
*sizeptr = size;
}
if (io_type == PCI_BASE_ADDRESS_SPACE_IO) {
loc = QEMU_ALIGN_UP(bus->pio_alloc_ptr, size);
g_assert(loc >= bus->pio_alloc_ptr);
g_assert(loc + size <= QPCI_PIO_LIMIT); /* Keep PIO below 64kiB */
bus->pio_alloc_ptr = loc + size;
qpci_config_writel(dev, bar_reg, loc | PCI_BASE_ADDRESS_SPACE_IO);
} else {
loc = QEMU_ALIGN_UP(bus->mmio_alloc_ptr, size);
/* Check for space */
g_assert(loc >= bus->mmio_alloc_ptr);
g_assert(loc + size <= bus->mmio_limit);
bus->mmio_alloc_ptr = loc + size;
qpci_config_writel(dev, bar_reg, loc);
}
bar.addr = loc;
return bar;
}
void qpci_iounmap(QPCIDevice *dev, QPCIBar bar)
{
/* FIXME */
}
QPCIBar qpci_legacy_iomap(QPCIDevice *dev, uint16_t addr)
{
QPCIBar bar = { .addr = addr };
return bar;
}
void qpci_plug_device_test(const char *driver, const char *id,
uint8_t slot, const char *opts)
{
qtest_qmp_device_add(driver, id, "'addr': '%d'%s%s", slot,
opts ? ", " : "", opts ? opts : "");
}