blob: b542bca692fccc7d4dd7a44fe706fe8c285a365d [file] [log] [blame]
#include <Python.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/arrayobject.h>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <sstream>
#include <vector>
#include "caffe2/core/context.h"
#ifndef PYCAFFE2_CPU_ONLY
#include "caffe2/core/context_gpu.h"
#endif // PYCAFFE2_CPU_ONLY
#include "caffe2/core/init.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2.pb.h"
//using namespace caffe2; // NOLINT
using caffe2::Blob;
using caffe2::DeviceOption;
using caffe2::Tensor;
using caffe2::Workspace;
using caffe2::CPUContext;
using caffe2::OperatorDef;
#ifndef PYCAFFE2_CPU_ONLY
using caffe2::CUDAContext;
#endif // PYCAFFE2_CPU_ONLY
// gWorkspaces allows us to define and switch between multiple workspaces in
// Python.
static std::map<std::string, std::unique_ptr<Workspace> > gWorkspaces;
// gWorkspace is the pointer to the current workspace. The ownership is kept
// by the gWorkspaces map.
static Workspace* gWorkspace = nullptr;
static std::string gCurrentWorkspaceName;
namespace {
using caffe2::string;
bool SwitchWorkspaceInternal(const string& name, const bool create_if_missing) {
if (gWorkspaces.count(name)) {
gCurrentWorkspaceName = name;
gWorkspace = gWorkspaces[name].get();
return true;
} else if (create_if_missing) {
std::unique_ptr<Workspace> new_workspace(new Workspace());
gWorkspace = new_workspace.get();
gWorkspaces.insert(std::make_pair(name, std::move(new_workspace)));
gCurrentWorkspaceName = name;
return true;
} else {
return false;
}
}
inline string PyBytesToStdString(PyObject* pystring) {
return string(PyBytes_AsString(pystring), PyBytes_Size(pystring));
}
inline PyObject* StdStringToPyBytes(const string& str) {
return PyBytes_FromStringAndSize(str.c_str(), str.size());
}
template <typename T>
inline void MakeStringInternal(std::stringstream& ss, const T& t) {
ss << t;
}
template <typename T, typename ... Args>
inline void MakeStringInternal(std::stringstream& ss, const T& t, const Args&... args) {
MakeStringInternal(ss, t);
MakeStringInternal(ss, args...);
}
template <typename... Args>
string MakeString(const Args&... args) {
std::stringstream ss;
MakeStringInternal(ss, args...);
return string(ss.str());
}
inline void PyErr_SetString(PyObject* type, const string& str) {
PyErr_SetString(type, str.c_str());
}
static_assert(sizeof(int) == sizeof(int32_t),
"Yangqing made a loose assumption that int will always be int32 "
"for numpy type mapping");
template <typename T> struct NumpyTypeWrapper;
template<> struct NumpyTypeWrapper<float> {
static const int type = NPY_FLOAT;
};
template<> struct NumpyTypeWrapper<int> {
static const int type = NPY_INT32;
};
template <typename T, class DeviceContext>
PyObject* FetchTensor(const Tensor<DeviceContext>& tensor) {
DeviceContext context;
CAFFE_CHECK_GT(tensor.size(), 0);
std::vector<npy_intp> npy_dims;
for (const int dim : tensor.dims()) {
npy_dims.push_back(dim);
}
PyObject* array = PyArray_SimpleNew(
tensor.ndim(), npy_dims.data(), NumpyTypeWrapper<T>::type);
// Now, copy the data to the tensor.
// TODO(Yangqing): Is there an easier way to convert PyObject to
// PyArrayObject?
context.template Copy<T, DeviceContext, caffe2::CPUContext>(
tensor.size(), tensor.template data<T>(),
static_cast<T*>(PyArray_DATA(reinterpret_cast<PyArrayObject*>(array))));
context.FinishDeviceComputation();
return array;
}
template <typename T, class DeviceContext>
PyObject* FeedTensor(const DeviceOption& option, PyArrayObject* original_array,
Blob* blob) {
PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array);
DeviceContext context(option);
Tensor<DeviceContext>* tensor =
blob->GetMutable<Tensor<DeviceContext> >();
// numpy requires long int as its dims.
int ndim = PyArray_NDIM(array);
npy_intp* npy_dims = PyArray_DIMS(array);
std::vector<int> dims;
for (int i = 0; i < ndim; ++i) {
dims.push_back(npy_dims[i]);
}
tensor->Reshape(dims);
// Now, copy the data to the tensor.
context.template Copy<T, caffe2::CPUContext, DeviceContext>(
tensor->size(), static_cast<T*>(PyArray_DATA(array)),
tensor->template mutable_data<T>());
context.FinishDeviceComputation();
Py_XDECREF(array);
Py_RETURN_TRUE;
}
} // namespace
extern "C" {
PyObject* GlobalInit(PyObject* self, PyObject* args) {
static bool global_init_called = false;
if (global_init_called) {
PyErr_SetString(PyExc_RuntimeError, "GlobalInit already called.");
return NULL;
}
PyObject* list;
if (!PyArg_ParseTuple(args, "O!", &PyList_Type, &list)) {
PyErr_SetString(PyExc_ValueError, "Incorrect arguments.");
return NULL;
}
int argc = PyList_Size(list);
std::unique_ptr<char*> argv(new char*[std::max(argc, 1)]);
char** raw_argv = argv.get();
for (int i = 0; i < argc; ++i) {
// Get the pointer to the string
raw_argv[i] = PyBytes_AsString(PyList_GetItem(list, i));
}
// Special case for argc = 0: in this case, we will simply add a dummy
// argv to call caffe2's underlying code.
if (argc == 0) {
++argc;
raw_argv[0] = "python";
}
global_init_called = true;
if (!caffe2::GlobalInit(&argc, raw_argv)) {
PyErr_SetString(PyExc_RuntimeError, "Error in global init.");
return NULL;
}
Py_RETURN_TRUE;
}
PyObject* RegisteredOperators(PyObject* self, PyObject* args) {
std::set<string> all_keys;
// CPU operators
for (const auto& name : caffe2::CPUOperatorRegistry()->Keys()) {
all_keys.insert(name);
}
// CUDA operators
for (const auto& name : caffe2::CUDAOperatorRegistry()->Keys()) {
all_keys.insert(name);
}
// Now, add it to the list
PyObject* list = PyList_New(all_keys.size());
int idx = 0;
for (const string& name : all_keys) {
CAFFE_CHECK_EQ(PyList_SetItem(list, idx, StdStringToPyBytes(name)), 0);
++idx;
}
return list;
}
PyObject* GetGradientDefs(PyObject* self, PyObject* args) {
PyObject* def_string = nullptr;
if (!PyArg_ParseTuple(args, "|S", &def_string)) {
PyErr_SetString(PyExc_ValueError,
"GetGradientDefs requires an input that is a serialized "
"OperatorDef protobuffer.");
return NULL;
}
OperatorDef def;
if (!def.ParseFromString(PyBytesToStdString(def_string))) {
PyErr_SetString(PyExc_ValueError,
"Provided string is not a valid OperatorDef protobuffer.");
return NULL;
}
std::unique_ptr<std::vector<OperatorDef> > grad_defs(GetGradientDefs(def));
if (grad_defs.get() == nullptr) {
PyErr_SetString(
PyExc_ValueError,
("Gradient not registered for operator type " + def.type()).c_str());
return NULL;
}
PyObject* list = PyList_New(grad_defs->size());
int i = 0;
for (const OperatorDef & grad_def : *grad_defs) {
CAFFE_CHECK_EQ(PyList_SetItem(
list, i, StdStringToPyBytes(grad_def.SerializeAsString())), 0);
++i;
}
return list;
}
PyObject* SwitchWorkspace(PyObject* self, PyObject* args) {
PyObject* name = nullptr;
PyObject* create_if_missing = nullptr;
if (!PyArg_ParseTuple(args, "S|O", &name, &create_if_missing)) {
PyErr_SetString(PyExc_ValueError,
"SwitchWorkspace takes in a workspace name, and "
"an optional boolean value that specifies whether "
"we want to create the workspace if it is missing.");
return NULL;
}
bool success = SwitchWorkspaceInternal(
PyBytesToStdString(name),
(create_if_missing != nullptr) && PyObject_IsTrue(create_if_missing));
if (!success) {
PyErr_SetString(
PyExc_RuntimeError,
"Workspace of the given name does not exist, and I am not instructed "
"to create it either.");
return NULL;
}
Py_RETURN_TRUE;
}
PyObject* CurrentWorkspace(PyObject* self, PyObject* args) {
return StdStringToPyBytes(gCurrentWorkspaceName);
}
PyObject* Workspaces(PyObject* self, PyObject* args) {
PyObject* list = PyList_New(gWorkspaces.size());
int i = 0;
for (auto const & it : gWorkspaces) {
CAFFE_CHECK_EQ(PyList_SetItem(list, i, StdStringToPyBytes(it.first)), 0);
i += 1;
}
return list;
}
PyObject* ResetWorkspace(PyObject* self, PyObject* args) {
PyObject* root_folder = nullptr;
if (!PyArg_ParseTuple(args, "|S", &root_folder)) {
PyErr_SetString(PyExc_ValueError,
"ResetWorkspace takes in either no argument, or a string "
"specifying the root folder of the workspace.");
return NULL;
}
CAFFE_VLOG(1) << "Resetting workspace.";
if (root_folder == nullptr) {
gWorkspaces[gCurrentWorkspaceName].reset(
new Workspace());
} else {
gWorkspaces[gCurrentWorkspaceName].reset(
new Workspace(PyBytesToStdString(root_folder)));
}
gWorkspace = gWorkspaces[gCurrentWorkspaceName].get();
Py_RETURN_TRUE;
}
PyObject* RootFolder(PyObject* self, PyObject* args) {
return StdStringToPyBytes(gWorkspace->RootFolder());
}
// This function should not be called by the user - only used during the
// destruction of the module.
PyObject* OnModuleExit(PyObject* self, PyObject* args) {
gWorkspaces.clear();
Py_RETURN_TRUE;
}
PyObject* Blobs(PyObject* self, PyObject* args) {
std::vector<caffe2::string> blob_strings = gWorkspace->Blobs();
PyObject* list = PyList_New(blob_strings.size());
for (int i = 0; i < blob_strings.size(); ++i) {
CAFFE_CHECK_EQ(
PyList_SetItem(list, i, StdStringToPyBytes(blob_strings[i])), 0);
}
return list;
}
PyObject* HasBlob(PyObject* self, PyObject* args) {
char* name;
if (!PyArg_ParseTuple(args, "s", &name)) {
return NULL;
}
if (gWorkspace->HasBlob(caffe2::string(name))) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
PyObject* CreateNet(PyObject* self, PyObject* args) {
PyObject* proto_string;
if (!PyArg_ParseTuple(args, "S", &proto_string)) {
return NULL;
}
caffe2::NetDef proto;
if (!proto.ParseFromString(PyBytesToStdString(proto_string))) {
PyErr_SetString(PyExc_ValueError, "Cannot parse input net string.");
return NULL;
}
if (!gWorkspace->CreateNet(proto)) {
PyErr_SetString(
PyExc_RuntimeError,
"Cannot create network. See console log for error messages.");
return NULL;
}
Py_RETURN_TRUE;
}
PyObject* RunNet(PyObject* self, PyObject* args) {
char* name;
if (!PyArg_ParseTuple(args, "s", &name)) {
PyErr_SetString(PyExc_ValueError,
"Incorrect argument. Must pass in a single string.");
return NULL;
}
if (!gWorkspace->RunNet(caffe2::string(name))) {
PyErr_SetString(
PyExc_RuntimeError,
"Cannot run network. See console log for error messages.");
return NULL;
}
Py_RETURN_TRUE;
}
PyObject* BenchmarkNet(PyObject* self, PyObject* args) {
char* name;
int warmup_runs = 0;
int main_runs = 0;
PyObject* run_individual = nullptr;
if (!PyArg_ParseTuple(args, "siiO", &name, &warmup_runs,
&main_runs, &run_individual)) {
PyErr_SetString(PyExc_ValueError,
"Incorrect argument.");
return NULL;
}
caffe2::NetBase* net = gWorkspace->GetNet(caffe2::string(name));
if (net == nullptr) {
PyErr_SetString(PyExc_RuntimeError, "Cannot find network.");
return NULL;
}
net->TEST_Benchmark(warmup_runs, main_runs,
PyObject_IsTrue(run_individual));
Py_RETURN_TRUE;
}
PyObject* DeleteNet(PyObject* self, PyObject* args) {
char* name;
if (!PyArg_ParseTuple(args, "s", &name)) {
PyErr_SetString(PyExc_ValueError,
"Incorrect argument. Must pass in a single string.");
return NULL;
}
gWorkspace->DeleteNet(caffe2::string(name));
Py_RETURN_TRUE;
}
PyObject* Nets(PyObject* self, PyObject* args) {
std::vector<caffe2::string> net_strings = gWorkspace->Nets();
PyObject* list = PyList_New(net_strings.size());
for (int i = 0; i < net_strings.size(); ++i) {
CAFFE_CHECK_EQ(PyList_SetItem(list, i, StdStringToPyBytes(net_strings[i])), 0);
}
return list;
}
PyObject* RunOperatorOnce(PyObject* self, PyObject* args) {
PyObject* proto_string;
if (!PyArg_ParseTuple(args, "S", &proto_string)) {
PyErr_SetString(PyExc_ValueError,
"Incorrect argument. Must pass in a single string.");
return NULL;
}
caffe2::OperatorDef proto;
if (!proto.ParseFromString(PyBytesToStdString(proto_string))) {
PyErr_SetString(PyExc_ValueError, "Cannot parse input operator proto.");
return NULL;
}
if (!gWorkspace->RunOperatorOnce(proto)) {
PyErr_SetString(
PyExc_RuntimeError,
"Cannot run operator. See console log for error messages.");
return NULL;
}
Py_RETURN_TRUE;
}
PyObject* RunNetOnce(PyObject* self, PyObject* args) {
PyObject* proto_string;
if (!PyArg_ParseTuple(args, "S", &proto_string)) {
PyErr_SetString(PyExc_ValueError,
"Incorrect argument. Must pass in a single string.");
return NULL;
}
caffe2::NetDef proto;
if (!proto.ParseFromString(PyBytesToStdString(proto_string))) {
PyErr_SetString(PyExc_ValueError, "Cannot parse input net proto.");
return NULL;
}
if (!gWorkspace->RunNetOnce(proto)) {
PyErr_SetString(
PyExc_RuntimeError,
"Cannot run net. See console log for error messages.");
return NULL;
}
Py_RETURN_TRUE;
}
PyObject* RunPlan(PyObject* self, PyObject* args) {
PyObject* proto_string;
if (!PyArg_ParseTuple(args, "S", &proto_string)) {
PyErr_SetString(PyExc_ValueError,
"Incorrect argument. Must pass in a single string.");
return NULL;
}
caffe2::PlanDef proto;
if (!proto.ParseFromString(PyBytesToStdString(proto_string))) {
PyErr_SetString(PyExc_ValueError, "Cannot parse input plan proto.");
return NULL;
}
if (!gWorkspace->RunPlan(proto)) {
PyErr_SetString(
PyExc_RuntimeError,
"Cannot run plan. See console log for error messages.");
return NULL;
}
Py_RETURN_TRUE;
}
PyObject* CreateBlob(PyObject* self, PyObject* args) {
char* name_char;
if (!PyArg_ParseTuple(args, "s", &name_char)) {
PyErr_SetString(PyExc_ValueError, "Incorrect arguments.");
return NULL;
}
caffe2::string name(name_char);
(void) gWorkspace->CreateBlob(name);
Py_RETURN_TRUE;
}
PyObject* FetchBlob(PyObject* self, PyObject* args) {
char* name;
if (!PyArg_ParseTuple(args, "s", &name)) {
PyErr_SetString(PyExc_ValueError, "Incorrect arguments.");
return NULL;
}
if (!gWorkspace->HasBlob(caffe2::string(name))) {
PyErr_SetString(PyExc_ValueError, "Requested blob does not exist.");
return NULL;
}
const caffe2::Blob& blob = *(gWorkspace->GetBlob(caffe2::string(name)));
if (blob.IsType<Tensor<CPUContext> >()) {
const Tensor<CPUContext>& tensor = blob.Get<Tensor<CPUContext> >();
if (tensor.IsType<float>()) {
return FetchTensor<float, CPUContext>(tensor);
} else if (tensor.IsType<int>()) {
return FetchTensor<int, CPUContext>(tensor);
}
}
#ifndef PYCAFFE2_CPU_ONLY
if (blob.IsType<Tensor<CUDAContext> >()) {
const Tensor<CUDAContext>& tensor = blob.Get<Tensor<CUDAContext> >();
if (tensor.IsType<float>()) {
return FetchTensor<float, CUDAContext>(tensor);
} else if (tensor.IsType<int>()) {
return FetchTensor<int, CUDAContext>(tensor);
}
}
#endif // !PYCAFFE2_CPU_ONLY
// If all branches failed, we will return a metainfo string.
std::stringstream ss;
ss << caffe2::string(name) << ", a C++ native class of type "
<< blob.TypeName() << ".";
return StdStringToPyBytes(ss.str());
}
PyObject* FeedBlob(PyObject* self, PyObject* args) {
char* name_char;
PyArrayObject* array = nullptr;
PyObject* device_option_string = nullptr;
if (!PyArg_ParseTuple(args, "sO!|O", &name_char, &PyArray_Type, &array,
&device_option_string)) {
PyErr_SetString(PyExc_ValueError, "Incorrect arguments.");
return NULL;
}
caffe2::string name(name_char);
DeviceOption option;
if (device_option_string != nullptr) {
// If we have a device option passed in, read it.
if (!option.ParseFromString(PyBytesToStdString(device_option_string))) {
PyErr_SetString(PyExc_ValueError, "Cannot parse device option string.");
return NULL;
}
}
Blob* blob = gWorkspace->CreateBlob(name);
int data_type = PyArray_TYPE(array);
// Since there is really no polymorphism, we will have to do so...
switch (option.device_type()) {
case caffe2::CPU:
switch (data_type) {
case NPY_LONG:
if (sizeof(long) != sizeof(int)) {
CAFFE_LOG_FATAL << "On this platform NPY_LONG does not equal to "
"NPY_INT and such type is not supported yet.";
} else {
return FeedTensor<int, caffe2::CPUContext>(option, array, blob);
}
case NPY_INT:
return FeedTensor<int, caffe2::CPUContext>(option, array, blob);
case NPY_FLOAT:
return FeedTensor<float, caffe2::CPUContext>(option, array, blob);
default:
PyErr_SetString(PyExc_TypeError,
MakeString("Unsupported numpy data type: ", data_type, "."));
return NULL;
}
#ifndef PYCAFFE2_CPU_ONLY
case caffe2::CUDA:
switch (data_type) {
case NPY_LONG:
if (sizeof(long) != sizeof(int)) {
CAFFE_LOG_FATAL << "On this platform NPY_LONG does not equal to "
"NPY_INT and such type is not supported yet.";
} else {
return FeedTensor<int, caffe2::CUDAContext>(option, array, blob);
}
case NPY_INT:
return FeedTensor<int, caffe2::CUDAContext>(option, array, blob);
case NPY_FLOAT:
return FeedTensor<float, caffe2::CUDAContext>(option, array, blob);
default:
PyErr_SetString(PyExc_TypeError,
MakeString("Unsupported numpy data type: ", data_type, "."));
return NULL;
}
#endif // !PYCAFFE2_CPU_ONLY
default:
PyErr_SetString(PyExc_TypeError, "Unknown device type.");
return NULL;
}
}
PyObject* HasGPUSupport(PyObject* self, PyObject* args) {
#ifdef PYCAFFE2_CPU_ONLY
return Py_BuildValue("i", 0);
#else // PYCAFFE2_CPU_ONLY
return Py_BuildValue("i", 1);
#endif // PYCAFFE2_CPU_ONLY
}
#ifndef PYCAFFE2_CPU_ONLY
// Here are functions that are purely GPU-based functions to be filled.
PyObject* NumberOfGPUs(PyObject* self, PyObject* args) {
int num_devices = 0;
auto err = cudaGetDeviceCount(&num_devices);
if (err == cudaErrorNoDevice || err == cudaErrorInsufficientDriver) {
return Py_BuildValue("i", 0);
} else if (err != cudaSuccess) {
PyErr_SetString(PyExc_RuntimeError, "Runtime CUDA error.");
return NULL;
}
return Py_BuildValue("i", num_devices);
}
PyObject* SetDefaultGPUID(PyObject* self, PyObject* args) {
int device_id;
if (!PyArg_ParseTuple(args, "i", &device_id)) {
PyErr_SetString(PyExc_ValueError, "Incorrect arguments: must pass an int.");
return NULL;
}
caffe2::SetDefaultGPUID(device_id);
Py_RETURN_TRUE;
}
PyObject* GetDefaultGPUID(PyObject* self, PyObject* args) {
int device_id = caffe2::GetDefaultGPUID();
return Py_BuildValue("i", device_id);
}
PyObject* GetCudaPeerAccessPattern(PyObject* self, PyObject* args) {
std::vector<std::vector<bool> > pattern;
if (!caffe2::GetCudaPeerAccessPattern(&pattern)) {
PyErr_SetString(PyExc_RuntimeError,
"Error in running caffe2::GetCudaPeerAccessPattern.");
return NULL;
}
std::vector<npy_intp> npy_dims;
int num_devices = pattern.size();
npy_dims.push_back(num_devices);
npy_dims.push_back(num_devices);
PyObject* array = PyArray_SimpleNew(2, npy_dims.data(), NPY_BOOL);
bool* npy_data = static_cast<bool*>(
PyArray_DATA(reinterpret_cast<PyArrayObject*>(array)));
for (int i = 0; i < num_devices; ++i) {
for (int j = 0; j < num_devices; ++j) {
*(npy_data++) = pattern[i][j];
}
}
return array;
}
#endif // !PYCAFFE2_CPU_ONLY
// A simple macro to avoid writing repeated symbols.
#define _PYNAME(name) {#name, name, METH_VARARGS, ""}
static PyMethodDef gPycaffe2Methods[] = {
// TODO(Yangqing): write the methods string.
// Note(Yangqing): For any function that we are going to override in the
// python file, we prepend "cc_" here.
_PYNAME(GlobalInit),
_PYNAME(RegisteredOperators),
{"cc_GetGradientDefs", GetGradientDefs, METH_VARARGS, ""},
_PYNAME(SwitchWorkspace),
_PYNAME(CurrentWorkspace),
_PYNAME(Workspaces),
{"cc_ResetWorkspace", ResetWorkspace, METH_VARARGS, ""},
_PYNAME(RootFolder),
_PYNAME(OnModuleExit),
_PYNAME(Blobs),
_PYNAME(HasBlob),
{"cc_CreateNet", CreateNet, METH_VARARGS, ""},
_PYNAME(RunNet),
_PYNAME(BenchmarkNet),
_PYNAME(DeleteNet),
_PYNAME(Nets),
{"cc_RunOperatorOnce", RunOperatorOnce, METH_VARARGS, ""},
{"cc_RunNetOnce", RunNetOnce, METH_VARARGS, ""},
{"cc_RunPlan", RunPlan, METH_VARARGS, ""},
_PYNAME(CreateBlob),
_PYNAME(FetchBlob),
{"cc_FeedBlob", FeedBlob, METH_VARARGS, ""},
_PYNAME(HasGPUSupport),
#ifndef PYCAFFE2_CPU_ONLY
_PYNAME(NumberOfGPUs),
_PYNAME(SetDefaultGPUID),
_PYNAME(GetDefaultGPUID),
_PYNAME(GetCudaPeerAccessPattern),
#endif // !PYCAFFE2_CPU_ONLY
{NULL, NULL, 0, NULL}, // end of python methods.
};
#undef _PYNAME
// This is a workaround so we can deal with numpy's import_array behavior.
// Despite the fact that you may think import_array() is a function call,
// it seems that (as of 1.10) that is defined as a macro. As a result, we
// wrap it inside a function to make everythings safe, as well as checking
// the different behaviors in python 2 and 3.
#if PY_MAJOR_VERSION >= 3
#define CAFFE2_NUMPY_RETURN_TYPE int
#else
#define CAFFE2_NUMPY_RETURN_TYPE void
#endif
CAFFE2_NUMPY_RETURN_TYPE caffe2_init_numpy_wrapper() {
import_array();
}
void common_init_libcaffe2_python(void) {
caffe2_init_numpy_wrapper(); // for numpy
// We will create a default workspace for us to run stuff.
SwitchWorkspaceInternal("default", true);
gCurrentWorkspaceName = "default";
}
// The initialization code.
#if PY_MAJOR_VERSION >= 3
struct module_state {
PyObject* error;
};
inline static struct module_state* ModuleGetState(PyObject* module) {
return (struct module_state*)PyModule_GetState(module);
}
static int caffe2_python_traverse(PyObject* m, visitproc visit, void* arg) {
Py_VISIT(ModuleGetState(m)->error);
return 0;
}
static int caffe2_python_clear(PyObject* m) {
Py_CLEAR(ModuleGetState(m)->error);
return 0;
}
static struct PyModuleDef gModuleDef = {
PyModuleDef_HEAD_INIT,
"libcaffe2_python",
NULL,
sizeof(struct module_state),
gPycaffe2Methods,
NULL,
caffe2_python_traverse,
caffe2_python_clear,
NULL
};
PyObject* PyInit_libcaffe2_python(void) {
PyObject* module = PyModule_Create(&gModuleDef);
if (module == nullptr) {
return NULL;
}
struct module_state* st = ModuleGetState(module);
st->error = PyErr_NewException("libcaffe2_python.Error", NULL, NULL);
if (st->error == NULL) {
Py_DECREF(module);
return NULL;
}
return module;
common_init_libcaffe2_python();
}
#else // PY_MAJOR_VERSION >= 3
void initlibcaffe2_python(void) {
PyObject* module = Py_InitModule("libcaffe2_python", gPycaffe2Methods);
if (module == nullptr) {
return;
}
common_init_libcaffe2_python();
}
#endif // PY_MAJOR_VERSION >= 3
} // extern "C"