| import torch |
| from . import _functional as F |
| from .optimizer import Optimizer |
| |
| |
| class RMSprop(Optimizer): |
| r"""Implements RMSprop algorithm. |
| |
| .. math:: |
| \begin{aligned} |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{input} : \alpha \text{ (alpha)},\: \gamma \text{ (lr)}, |
| \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ |
| &\hspace{13mm} \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},\: centered\\ |
| &\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \: |
| \textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0 \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
| &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
| &\hspace{5mm}if \: \lambda \neq 0 \\ |
| &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
| &\hspace{5mm}v_t \leftarrow \alpha v_{t-1} + (1 - \alpha) g^2_t |
| \hspace{8mm} \\ |
| &\hspace{5mm} \tilde{v_t} \leftarrow v_t \\ |
| &\hspace{5mm}if \: centered \\ |
| &\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t \\ |
| &\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} - \big(g^{ave}_{t} \big)^2 \\ |
| &\hspace{5mm}if \: \mu > 0 \\ |
| &\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} + |
| g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \\ |
| &\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t \\ |
| &\hspace{5mm} else \\ |
| &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - |
| \gamma g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \hspace{3mm} \\ |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| &\bf{return} \: \theta_t \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| \end{aligned} |
| |
| For further details regarding the algorithm we refer to |
| `lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton. |
| and centered version `Generating Sequences |
| With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. |
| The implementation here takes the square root of the gradient average before |
| adding epsilon (note that TensorFlow interchanges these two operations). The effective |
| learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma` |
| is the scheduled learning rate and :math:`v` is the weighted moving average |
| of the squared gradient. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-2) |
| momentum (float, optional): momentum factor (default: 0) |
| alpha (float, optional): smoothing constant (default: 0.99) |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-8) |
| centered (bool, optional) : if ``True``, compute the centered RMSProp, |
| the gradient is normalized by an estimation of its variance |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| |
| """ |
| |
| def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 <= eps: |
| raise ValueError("Invalid epsilon value: {}".format(eps)) |
| if not 0.0 <= momentum: |
| raise ValueError("Invalid momentum value: {}".format(momentum)) |
| if not 0.0 <= weight_decay: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| if not 0.0 <= alpha: |
| raise ValueError("Invalid alpha value: {}".format(alpha)) |
| |
| defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay) |
| super(RMSprop, self).__init__(params, defaults) |
| |
| def __setstate__(self, state): |
| super(RMSprop, self).__setstate__(state) |
| for group in self.param_groups: |
| group.setdefault('momentum', 0) |
| group.setdefault('centered', False) |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| grads = [] |
| square_avgs = [] |
| grad_avgs = [] |
| momentum_buffer_list = [] |
| |
| for p in group['params']: |
| if p.grad is None: |
| continue |
| params_with_grad.append(p) |
| |
| if p.grad.is_sparse: |
| raise RuntimeError('RMSprop does not support sparse gradients') |
| grads.append(p.grad) |
| |
| state = self.state[p] |
| |
| # State initialization |
| if len(state) == 0: |
| state['step'] = 0 |
| state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| if group['momentum'] > 0: |
| state['momentum_buffer'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| if group['centered']: |
| state['grad_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| |
| square_avgs.append(state['square_avg']) |
| |
| if group['momentum'] > 0: |
| momentum_buffer_list.append(state['momentum_buffer']) |
| if group['centered']: |
| grad_avgs.append(state['grad_avg']) |
| |
| state['step'] += 1 |
| |
| |
| F.rmsprop(params_with_grad, |
| grads, |
| square_avgs, |
| grad_avgs, |
| momentum_buffer_list, |
| lr=group['lr'], |
| alpha=group['alpha'], |
| eps=group['eps'], |
| weight_decay=group['weight_decay'], |
| momentum=group['momentum'], |
| centered=group['centered']) |
| |
| return loss |