| # Owner(s): ["oncall: distributed"] |
| |
| import shutil |
| import tempfile |
| from functools import wraps |
| from typing import Any, Callable, Dict, Optional, Tuple |
| |
| import torch |
| import torch.distributed as dist |
| import torch.distributed.checkpoint as dcp |
| import torch.nn as nn |
| from torch.distributed.checkpoint._fsspec_filesystem import FsspecReader, FsspecWriter |
| from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict |
| from torch.distributed.checkpoint.utils import CheckpointException |
| from torch.distributed.fsdp import FullyShardedDataParallel as FSDP |
| from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType |
| from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu |
| from torch.testing._internal.common_utils import run_tests |
| from torch.testing._internal.distributed._shard.sharded_tensor import ( |
| ShardedTensorTestBase, |
| with_comms, |
| ) |
| |
| |
| def with_temp_dir( |
| func: Optional[Callable] = None, |
| ) -> Optional[Callable]: |
| """ |
| Wrapper to initialize temp directory for distributed checkpoint. |
| """ |
| assert func is not None |
| |
| @wraps(func) |
| def wrapper(self, *args: Tuple[object], **kwargs: Dict[str, Any]) -> None: |
| # Only create temp_dir when rank is 0 |
| if dist.get_rank() == 0: |
| temp_dir = tempfile.mkdtemp() |
| print(f"Using temp directory: {temp_dir}") |
| else: |
| temp_dir = "" |
| object_list = [temp_dir] |
| |
| # Broadcast temp_dir to all the other ranks |
| dist.broadcast_object_list(object_list) |
| self.temp_dir = object_list[0] |
| |
| try: |
| func(self, *args, **kwargs) |
| finally: |
| if dist.get_rank() == 0: |
| shutil.rmtree(self.temp_dir, ignore_errors=True) |
| |
| return wrapper |
| |
| |
| class MyTestModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.net1 = nn.Sequential(nn.Linear(8, 16), nn.ReLU()) |
| self.net2 = nn.Sequential(nn.Linear(16, 32), nn.ReLU()) |
| self.net3 = nn.Linear(32, 64) |
| self.net4 = nn.Sequential(nn.ReLU(), nn.Linear(64, 8)) |
| |
| def forward(self, x): |
| return self.net4(self.net3(self.net2(self.net1(x)))) |
| |
| |
| class TestFSSpec(ShardedTensorTestBase): |
| @property |
| def world_size(self) -> int: |
| return 2 |
| |
| @with_comms(init_rpc=False) |
| @skip_if_lt_x_gpu(2) |
| @requires_nccl() |
| @with_temp_dir |
| def test_fsspec(self): |
| CHECKPOINT_DIR = self.temp_dir |
| |
| model = FSDP(MyTestModule().cuda()) |
| optim = torch.optim.Adam(model.parameters(), lr=0.1) |
| model(torch.rand(8, 8, device=dist.get_rank())).sum().backward() |
| optim.step() |
| |
| with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT): |
| state_dict = { |
| "model": model.state_dict(), |
| "optim": FSDP.optim_state_dict(model, optim), |
| } |
| |
| dcp.save( |
| state_dict=state_dict, |
| storage_writer=FsspecWriter(CHECKPOINT_DIR), |
| planner=dcp.DefaultSavePlanner(), |
| ) |
| |
| model_2 = FSDP(MyTestModule().cuda()) |
| optim_2 = torch.optim.Adam(model_2.parameters(), lr=0.1) |
| |
| with FSDP.summon_full_params(model): |
| with FSDP.summon_full_params(model_2): |
| for n_p1, n_p2 in zip( |
| model.named_parameters(), model_2.named_parameters() |
| ): |
| self.assertNotEqual(n_p1[1], n_p2[1]) |
| |
| # now load the model and ensure the values are the same |
| with FSDP.state_dict_type(model_2, StateDictType.SHARDED_STATE_DICT): |
| state_dict = { |
| "model": model_2.state_dict(), |
| } |
| |
| dcp.load( |
| state_dict=state_dict, |
| storage_reader=FsspecReader(CHECKPOINT_DIR), |
| planner=dcp.DefaultLoadPlanner(), |
| ) |
| model_2.load_state_dict(state_dict["model"]) |
| |
| optim_state = load_sharded_optimizer_state_dict( |
| model_state_dict=state_dict["model"], |
| optimizer_key="optim", |
| storage_reader=FsspecReader(CHECKPOINT_DIR), |
| ) |
| |
| flattened_osd = FSDP.optim_state_dict_to_load( |
| model_2, optim_2, optim_state["optim"] |
| ) |
| optim_2.load_state_dict(flattened_osd) |
| |
| with FSDP.summon_full_params(model): |
| with FSDP.summon_full_params(model_2): |
| for n_p1, n_p2 in zip( |
| model.named_parameters(), model_2.named_parameters() |
| ): |
| self.assertEqual(n_p1[1], n_p2[1]) |
| |
| def opt_at(opt, idx): |
| return list(iter(opt.state.values()))[idx] |
| |
| # Adam lazily creates its state |
| self.assertEqual(opt_at(optim, 0)["exp_avg"], opt_at(optim_2, 0)["exp_avg"]) |
| self.assertEqual( |
| opt_at(optim, 0)["exp_avg_sq"], opt_at(optim_2, 0)["exp_avg_sq"] |
| ) |
| |
| @with_comms(init_rpc=False) |
| @skip_if_lt_x_gpu(2) |
| @requires_nccl() |
| @with_temp_dir |
| def test_overwrite(self): |
| t1, t2 = torch.randn(10), torch.randn(10) |
| |
| dcp.save( |
| {"random": t1}, storage_writer=FsspecWriter(self.temp_dir, overwrite=False) |
| ) |
| dcp.save( |
| {"random": t2}, storage_writer=FsspecWriter(self.temp_dir, overwrite=True) |
| ) |
| |
| sd = {"random": torch.zeros(10)} |
| dcp.load(sd, checkpoint_id=self.temp_dir) |
| self.assertTrue(torch.allclose(sd["random"], t2)) |
| |
| with self.assertRaisesRegex( |
| CheckpointException, ".*Checkpoint already exists.*" |
| ): |
| dcp.save( |
| {"random": t2}, |
| storage_writer=FsspecWriter(self.temp_dir, overwrite=False), |
| ) |
| |
| |
| if __name__ == "__main__": |
| run_tests() |