blob: 952327f13c1cede1ea20d35160b313f2eba2f988 [file] [log] [blame]
// Note(jiayq): the import_array function is done inside
// caffe2_python.cc. Read
// http://docs.scipy.org/doc/numpy-1.10.1/reference/c-api.array.html#miscellaneous
// for more details.
#define NO_IMPORT_ARRAY
#include "pybind_state.h"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <caffe2/ideep/ideep_utils.h>
namespace caffe2 {
namespace python {
USE_IDEEP_DEF_ALIASES();
class IDeepFetcher;
class IDeepFeeder;
REGISTER_BLOB_FETCHER((TypeMeta::Id<itensor>()),IDeepFetcher);
REGISTER_BLOB_FEEDER(IDEEP, IDeepFeeder);
class IDeepFetcher : public BlobFetcherBase {
TypeMeta type_transform(const itensor &atensor) {
switch(atensor.get_data_type()) {
case itensor::data_type::f32:
return TypeMeta::Make<float>();
case itensor::data_type::s16:
return TypeMeta::Make<float16>();
case itensor::data_type::s32:
return TypeMeta::Make<int>();
case itensor::data_type::s8:
return TypeMeta::Make<int8_t>();
case itensor::data_type::u8:
return TypeMeta::Make<uint8_t>();
default:
// Should we throw exception?
return TypeMeta();
}
}
public:
pybind11::object Fetch(const Blob& blob) override {
try {
return FetchTensor(blob.Get<itensor>(), true).obj;
} catch (ideep::error& e) {
VLOG(1) << "IDEEP error: " << e.message;
throw;
}
}
FetchedBlob FetchTensor(const itensor& atensor, bool force_copy) {
FetchedBlob result;
CAFFE_ENFORCE(atensor.materialized(),
"Trying to fetch uninitialized tensor");
const int numpy_type = CaffeToNumpyType(type_transform(atensor));
CAFFE_ENFORCE(
numpy_type != -1,
"Unsupported ideep memory data type? This usually should not happen "
"since ideep memory usually only do float and double.");
itensor::dims dims = atensor.get_dims();
std::vector<npy_intp> npy_dims(dims.begin(), dims.end());
result.copied = force_copy || atensor.need_reorder();
void* outPtr;
if (result.copied) {
result.obj = py::reinterpret_steal<py::object>(
PyArray_SimpleNew(atensor.ndims(), npy_dims.data(), numpy_type));
outPtr = static_cast<void *>(
PyArray_DATA(reinterpret_cast<PyArrayObject*>(result.obj.ptr())));
} else {
outPtr = atensor.get_data_handle();
result.obj = py::reinterpret_steal<py::object>(
PyArray_SimpleNewFromData(
atensor.ndims(), npy_dims.data(), numpy_type, outPtr));
}
if (numpy_type == NPY_OBJECT) {
CAFFE_THROW("We don't support strings.");
}
if (result.copied) {
atensor.reorder_to(outPtr);
}
return result;
}
};
class IDeepFeeder : public BlobFeederBase {
itensor::data_type type_transform(const TypeMeta &meta) {
if (meta == TypeMeta::Make<float>())
return itensor::data_type::f32;
else if (meta == TypeMeta::Make<int>())
return itensor::data_type::s32;
else if (meta == TypeMeta::Make<float16>())
return itensor::data_type::s16;
else if (meta == TypeMeta::Make<int8_t>())
return itensor::data_type::s8;
else if (meta == TypeMeta::Make<uint8_t>())
return itensor::data_type::u8;
else
return itensor::data_type::data_undef;
}
public:
void FeedTensor(
const DeviceOption& option,
PyArrayObject *original_array,
itensor *tensor) {
PyArrayObject *array = PyArray_GETCONTIGUOUS(original_array);
auto g = MakeGuard([&]() {Py_XDECREF(array); });
const auto npy_type = PyArray_TYPE(array);
const TypeMeta& meta = NumpyTypeToCaffe(npy_type);
CAFFE_ENFORCE(
meta.id() != 0,
"This numpy data type is not supported: ",
PyArray_TYPE(array),
".");
int ndim = PyArray_NDIM(array);
npy_intp* npy_dims = PyArray_DIMS(array);
itensor::dims adims;
for (int i = 0; i < ndim; i++) {
adims.push_back(static_cast<itensor::dims::value_type>(
npy_dims[i]));
}
switch (npy_type) {
case NPY_OBJECT:
case NPY_UNICODE:
CAFFE_THROW("IDeep doesn't support string");
break;
default:
auto type = type_transform(meta);
tensor->resize(adims, type);
tensor->reorder_from(adims, type,
static_cast<void *>(PyArray_DATA(array)));
}
}
void Feed(const DeviceOption& option, PyArrayObject* original_array,
Blob* blob) {
try {
FeedTensor(option, original_array, blob->GetMutable<itensor>());
} catch (ideep::error& e) {
VLOG(1) << "IDEEP error: " << e.message;
throw;
}
}
};
} // namespace python
} // namespace caffe2