blob: 60dd233a75d63eabd530fd599fa63dba337fcc0b [file] [log] [blame]
## @package sparse_lookup
# Module caffe2.python.layers.sparse_lookup
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python.helpers.arg_scope import get_current_scope
from caffe2.python import schema
from caffe2.python.layers.layers import (
get_categorical_limit,
get_key,
IdList,
IdScoreList,
LayerPsParam,
ModelLayer,
)
import collections
import functools
import math
import numpy as np
import operator
def get_sparse_lookup_predictor_version(version):
assert version in {'fp32', 'fp16', 'uint8rowwise', 'fused_uint8rowwise'},\
"Unexpected version of sparse_lookup layer {0}".format(version)
return version
def _is_id_list(input_record):
return schema.equal_schemas(input_record, IdList)
def _is_id_score_list(input_record):
return schema.equal_schemas(input_record,
IdScoreList,
check_field_types=False)
class SparseLookup(ModelLayer):
_id_list_supported_reducers = [
'LogMeanExp', 'LogSumExp', 'Max', 'Mean', 'Sum',
'WeightedSum', 'WeightedMean', 'Sqrt', 'None']
_id_score_list_supported_reducers = [
'PositionWeighted', 'Mean', 'Sum', 'WeightedSum', 'WeightedMean', 'None']
def __init__(self, model, input_record, inner_shape, reducer,
weight_init=None, weight_optim=None,
name='sparse_lookup', regularizer=None, **kwargs):
super(SparseLookup, self).__init__(model, name, input_record, **kwargs)
# TODO Add some asserts about input type
if isinstance(inner_shape, int):
inner_shape = [inner_shape]
assert isinstance(inner_shape, list) or isinstance(inner_shape, tuple),\
"Unexpected type for inner_shape, expected list or tuple, got {0}".\
format(type(inner_shape))
if reducer == "PositionWeighted":
assert _is_id_score_list(self.input_record), (
"PositionWeighted only support IdScoreList, but got {} " +
"please use PositionWeighted layer to convert IdList " +
"to IdScoreList").format(repr(self.input_record))
self.external_weights = input_record.values()
self.reducer = reducer
input_dim = get_categorical_limit(input_record)
assert input_dim > 0, (
"{} should have categorical limit > 0, but got {}".format(
get_key(input_record)(), input_dim))
scale = math.sqrt(1.0 / input_dim)
self.shape = [input_dim] + inner_shape
self.weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale, 'max': scale})
if _is_id_list(self.input_record):
sparse_key = self.input_record.items()
elif _is_id_score_list(self.input_record):
sparse_key = self.input_record.keys()
else:
raise NotImplementedError()
if self.input_record.lengths.metadata:
avg_length = self.input_record.lengths.metadata.expected_value
else:
avg_length = None
self.w = self.create_param(
param_name='w',
shape=self.shape,
initializer=self.weight_init,
optimizer=weight_optim,
ps_param=LayerPsParam(
sparse_key=sparse_key,
average_length=avg_length),
regularizer=regularizer
)
self.scale_bias_init = ('ConstantFill', {'value': 0.0})
self.scale_bias = self.create_param(
param_name='scale_bias',
shape=[],
initializer=self.scale_bias_init,
optimizer=model.NoOptim,
)
self.output_schema = schema.Scalar(
(np.float32, inner_shape),
self.get_next_blob_reference('output'),
)
def get_memory_usage(self):
return functools.reduce(operator.mul, self.shape) * 4
def get_fp16_compatible_parameters(self):
return [self.w]
def support_8bit(self):
# Rowwise quantization makes sense only if shape it's 2D matrix with
# second dimension >= 8
if len(self.shape) != 2 or self.shape[1] < 8:
return False
return True
def get_8bits_compatible_parameters(self, fused=True):
if not self.support_8bit():
return []
if fused:
RowwiseQuantized8BitsWeight = collections.namedtuple(
'RowwiseQuantized8BitsWeight', 'w'
)
return [RowwiseQuantized8BitsWeight(self.w)]
else:
RowwiseQuantized8BitsWeight = collections.namedtuple(
'RowwiseQuantized8BitsWeight', 'w, scale_bias'
)
return [RowwiseQuantized8BitsWeight(self.w, self.scale_bias)]
def _gather_wrapper(self, net, version, in_indices, out):
# Gather can work on all kinds of input data types, and output
# data with the same type. Convert the output of Gather to float,
# because the follow-up Ops expect fp32.
if version == 'fp32':
return net.Gather([self.w, in_indices], out)
elif version == 'fp16':
gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
return net.HalfToFloat(gathered_w, out)
elif version == 'uint8rowwise':
gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
gathered_scale_bias = net.Gather(
[self.scale_bias, in_indices],
'gathered_scale_bias'
)
return net.Rowwise8BitQuantizedToFloat(
[gathered_w, gathered_scale_bias], out)
elif version == 'fused_uint8rowwise':
gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
return net.Fused8BitRowwiseQuantizedToFloat(gathered_w, out)
else:
raise "Unsupported version of operators in SparseLookup " +\
"layer: {0}".format(version)
def _sparse_lengths_weighted_reducer(
self, in_indices, weights, reducer,
net, version, grad_on_weights=0):
op_input = [
self.w,
weights,
in_indices,
self.input_record.lengths()
]
layer_name = 'SparseLengths' + reducer
if version in ['fp32', 'fp16']:
# SparseLengths* Ops will accept either fp16 or fp32 embedding
# matrix and output fp32 pooled embedding
net.__getattr__(layer_name)(
op_input,
self.output_schema.field_blobs(),
grad_on_weights=grad_on_weights,
)
elif version == 'uint8rowwise':
op_input.insert(len(op_input), self.scale_bias)
net.__getattr__(layer_name + '8BitsRowwise')(
op_input, self.output_schema.field_blobs())
elif version == 'fused_uint8rowwise':
net.__getattr__(layer_name + 'Fused8BitRowwise')(
op_input, self.output_schema.field_blobs())
else:
raise "Unsupported version of operator in SparseLookUp " +\
"layer: {0}".format(version)
# deal with sparse features of id_list type
def _add_ops_id_list(self, net, version):
assert self.reducer in self._id_list_supported_reducers, (
"Unsupported reducer: {} for ID_LIST".format(self.reducer)
)
if self.reducer in ['Sum', 'Mean', 'WeightedSum', 'WeightedMean']:
op_input = [self.w,
self.input_record.items(),
self.input_record.lengths()]
# For id list features, the behaviors of 'Sum' and
# 'WeightedSum' are identical, since we can regard the weight on each
# id as 1. Similarly, for 'Mean' and 'WeightedMean'.
if self.reducer == 'WeightedSum':
self.reducer = 'Sum'
elif self.reducer == 'WeightedMean':
self.reducer = 'Mean'
layer_name = 'SparseLengths' + self.reducer
if version in ['fp32', 'fp16']:
# SparseLengths* Ops will accept either fp16 or fp32 embedding
# matrix and output fp32 pooled embedding
net.__getattr__(layer_name)(
op_input,
self.output_schema.field_blobs(),
)
elif version == 'uint8rowwise':
op_input.insert(len(op_input), self.scale_bias)
net.__getattr__(layer_name + '8BitsRowwise')(
op_input, self.output_schema.field_blobs())
elif version == 'fused_uint8rowwise':
net.__getattr__(layer_name + 'Fused8BitRowwise')(
op_input, self.output_schema.field_blobs())
else:
raise "Unsupported version of operator in SparseLookUp " +\
"layer: {0}".format(version)
elif self.reducer == 'Sqrt':
sqrt_weight = net.LengthsToWeights(
[self.input_record.lengths()],
[net.NextScopedBlob('lengths_sqrt')],
power=0.5,
)
self._sparse_lengths_weighted_reducer(
self.input_record.items(),
sqrt_weight,
'WeightedSum', net, version)
elif self.reducer == 'None':
# Gather operator will gather the embedding for each id of
# each IdList.
self._gather_wrapper(net, version, self.input_record.items(),
self.output_schema.field_blobs())
else:
table_rows = self._gather_wrapper(
net, version, self.input_record.items(), 'table_rows')
segment_ids = net.LengthsToSegmentIds(
self.input_record.lengths(),
self.input_record.lengths() + '_sid')
net.__getattr__('SortedSegmentRange' + self.reducer)(
[table_rows, segment_ids],
self.output_schema.field_blobs(),
)
# deal with sparse features of id_score_list type
def _add_ops_id_score_list(self, net, version):
assert self.reducer in self._id_score_list_supported_reducers, (
"Unsupported reducer: {} for ID_SCORE_LIST".format(self.reducer)
)
if self.reducer in ['WeightedSum', 'WeightedMean']:
self._sparse_lengths_weighted_reducer(
self.input_record.keys(),
self.input_record.values(),
self.reducer, net, version)
elif self.reducer in ['Sum', 'Mean']:
op_input = [self.w,
self.input_record.keys(),
self.input_record.lengths()]
layer_name = 'SparseLengths' + self.reducer
if version in ['fp32', 'fp16']:
net.__getattr__(layer_name)(
op_input,
self.output_schema.field_blobs(),
)
elif version == 'uint8rowwise':
net.__getattr__(layer_name + '8BitsRowwise')(
op_input, self.output_schema.field_blobs())
elif version == 'fused_uint8rowwise':
net.__getattr__(layer_name + 'Fused8BitRowwise')(
op_input, self.output_schema.field_blobs())
else:
raise "Unsupported version of operator in SparseLookUp " +\
"layer: {0}".format(version)
elif self.reducer == 'PositionWeighted':
self._sparse_lengths_weighted_reducer(
self.input_record.keys(),
self.external_weights,
'WeightedSum', net, version, grad_on_weights=1)
elif self.reducer == 'None':
# Gather operator will gather the embedding for each id of
# each IdList.
self._gather_wrapper(net, version, self.input_record.keys(),
self.output_schema.field_blobs())
else:
raise "Only Sum, Mean, None are supported for IdScoreList input." +\
"Trying to create with {}".format(self.reducer)
def add_ops(self, net):
cur_scope = get_current_scope()
version = get_sparse_lookup_predictor_version(
**cur_scope.get(get_sparse_lookup_predictor_version.__name__,
{'version': 'fp32'}))
# TODO(amalevich): Layer should not be responsible for decision about
# quantization.
if not self.support_8bit() and version in {'uint8rowwise',
'fused_uint8rowwise'}:
version = 'fp32'
if _is_id_list(self.input_record):
self._add_ops_id_list(net, version=version)
elif _is_id_score_list(self.input_record):
self._add_ops_id_score_list(net, version=version)
else:
raise "Unsupported input type {0}".format(self.input_record)