| #include <catch.hpp> |
| |
| #include <torch/torch.h> |
| |
| using namespace torch; |
| |
| AUTOGRAD_CONTAINER_CLASS(TestModel) { |
| public: |
| void initialize_containers() override { |
| add(Linear(10, 3).make(), "l1"); |
| add(Linear(3, 5).make(), "l2"); |
| add(Linear(5, 100).make(), "l3"); |
| } |
| |
| variable_list forward(variable_list input) override { |
| return input; |
| }; |
| }; |
| |
| AUTOGRAD_CONTAINER_CLASS(NestedModel) { |
| public: |
| void initialize_containers() override { |
| add(Linear(5, 20).make(), "l1"); |
| add(TestModel().make(), "test"); |
| } |
| |
| void initialize_parameters() override { |
| add(Var(DefaultTensor(at::kFloat).tensor({3, 2, 21}), false), "param"); |
| } |
| |
| variable_list forward(variable_list input) override { |
| return input; |
| }; |
| }; |
| |
| TEST_CASE("containers") { |
| SECTION("conv") { |
| SECTION("1d") { |
| auto model = Conv1d(3, 2, 3).stride(2).make(); |
| auto x = Var(at::CPU(at::kFloat).randn({2, 3, 5}), true); |
| auto y = model->forward({x})[0]; |
| Variable s = y.sum(); |
| |
| backward(s); |
| REQUIRE(y.ndimension() == 4); |
| REQUIRE(s.ndimension() == 0); |
| for (auto i = 0; i < 3; i++) { |
| REQUIRE(y.size(i) == 2); |
| } |
| |
| REQUIRE(model->parameters()["weight"].grad().numel() == 3 * 2 * 3); |
| } |
| |
| SECTION("2d") { |
| SECTION("even") { |
| auto model = Conv2d(3, 2, 3).stride(2).make(); |
| auto x = Var(at::CPU(at::kFloat).randn({2, 3, 5, 5}), true); |
| auto y = model->forward({x})[0]; |
| Variable s = y.sum(); |
| |
| backward(s); |
| REQUIRE(y.ndimension() == 4); |
| REQUIRE(s.ndimension() == 0); |
| for (auto i = 0; i < 4; i++) { |
| REQUIRE(y.size(i) == 2); |
| } |
| |
| REQUIRE(model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 3); |
| } |
| |
| SECTION("uneven") { |
| auto model = Conv2d(3, 2, IntVec({3, 2})).stride(2).make(); |
| auto x = Var(at::CPU(at::kFloat).randn({2, 3, 5, 4}), true); |
| auto y = model->forward({x})[0]; |
| Variable s = y.sum(); |
| |
| backward(s); |
| REQUIRE(y.ndimension() == 4); |
| REQUIRE(s.ndimension() == 0); |
| for (auto i = 0; i < 4; i++) { |
| REQUIRE(y.size(i) == 2); |
| } |
| |
| REQUIRE(model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 2); |
| } |
| } |
| |
| SECTION("3d") { |
| auto model = Conv3d(3, 2, 3).stride(2).make(); |
| auto x = Var(at::CPU(at::kFloat).randn({2, 3, 5, 5, 5}), true); |
| auto y = model->forward({x})[0]; |
| Variable s = y.sum(); |
| |
| backward(s); |
| REQUIRE(y.ndimension() == 5); |
| REQUIRE(s.ndimension() == 0); |
| for (auto i = 0; i < 5; i++) { |
| REQUIRE(y.size(i) == 2); |
| } |
| |
| REQUIRE( |
| model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 3 * 3); |
| } |
| } |
| |
| SECTION("linear") { |
| SECTION("basic1") { |
| auto model = Linear(5, 2).make(); |
| auto x = Var(at::CPU(at::kFloat).randn({10, 5}), true); |
| auto y = model->forward({x})[0]; |
| Variable s = y.sum(); |
| |
| backward(s); |
| REQUIRE(y.ndimension() == 2); |
| REQUIRE(s.ndimension() == 0); |
| REQUIRE(y.size(0) == 10); |
| REQUIRE(y.size(1) == 2); |
| |
| REQUIRE(model->parameters()["weight"].grad().numel() == 2 * 5); |
| } |
| |
| SECTION("sequential") { |
| auto model = ContainerList() |
| .append(Linear(10, 3).make()) |
| .append(Linear(3, 5).make()) |
| .append(Linear(5, 100).make()) |
| .make(); |
| |
| auto x = Var(at::CPU(at::kFloat).randn({1000, 10})); |
| for (auto layer : *model) { |
| x = layer->forward({x})[0]; |
| x = x.clamp_min(0); // relu |
| } |
| |
| backward(x); |
| REQUIRE(x.ndimension() == 2); |
| REQUIRE(x.size(0) == 1000); |
| REQUIRE(x.size(1) == 100); |
| REQUIRE(x.data().min().toCFloat() == 0); |
| } |
| |
| SECTION("simple") { |
| auto model = SimpleContainer().make(); |
| auto l1 = model->add(Linear(10, 3).make(), "l1"); |
| auto l2 = model->add(Linear(3, 5).make(), "l2"); |
| auto l3 = model->add(Linear(5, 100).make(), "l3"); |
| |
| auto x = Var(at::CPU(at::kFloat).randn({1000, 10})); |
| x = l1->forward({x})[0].clamp_min(0); |
| x = l2->forward({x})[0].clamp_min(0); |
| x = l3->forward({x})[0].clamp_min(0); |
| |
| backward(x); |
| REQUIRE(x.ndimension() == 2); |
| REQUIRE(x.size(0) == 1000); |
| REQUIRE(x.size(1) == 100); |
| REQUIRE(x.data().min().toCFloat() == 0); |
| } |
| } |
| |
| SECTION("clone") { |
| auto model = TestModel().make(); |
| |
| auto model2 = model->clone(); |
| auto m1param = model->parameters(); |
| auto m2param = model2->parameters(); |
| for (auto& param : m1param) { |
| REQUIRE(param.second.allclose(m2param[param.first])); |
| param.second.data().mul_(2); |
| } |
| for (auto& param : m1param) { |
| REQUIRE(!param.second.allclose(m2param[param.first])); |
| } |
| } |
| |
| SECTION("embedding") { |
| SECTION("basic") { |
| int dict_size = 10; |
| auto model = Embedding(dict_size, 2).make(); |
| // Cannot get gradients to change indices (input) - only for embedding |
| // params |
| auto x = Var(at::CPU(at::kLong).tensor({10}).fill_(dict_size - 1), false); |
| auto y = model->forward({x})[0]; |
| Variable s = y.sum(); |
| |
| backward(s); |
| REQUIRE(y.ndimension() == 2); |
| REQUIRE(s.ndimension() == 0); |
| REQUIRE(y.size(0) == 10); |
| REQUIRE(y.size(1) == 2); |
| |
| REQUIRE(model->parameters()["weight"].grad().numel() == 2 * dict_size); |
| } |
| |
| SECTION("list") { |
| auto model = Embedding(6, 4).make(); |
| auto x = Var(at::CPU(at::kLong).tensor({2, 3}).fill_(5), false); |
| auto y = model->forward({x})[0]; |
| Variable s = y.sum(); |
| |
| backward(s); |
| REQUIRE(y.ndimension() == 3); |
| REQUIRE(y.size(0) == 2); |
| REQUIRE(y.size(1) == 3); |
| REQUIRE(y.size(2) == 4); |
| } |
| } |
| |
| SECTION("dropout") { |
| auto dropout = Dropout(0.5).make(); |
| Variable x = Var(at::CPU(at::kFloat).ones(100)); |
| Variable y = dropout->forward({x})[0]; |
| |
| backward(y); |
| REQUIRE(y.ndimension() == 1); |
| REQUIRE(y.size(0) == 100); |
| // TODO: These two tests are flaky |
| // https://github.com/pytorch/pytorch/issues/7286 |
| // REQUIRE(y.sum().toCFloat() < 130); // Probably |
| // REQUIRE(y.sum().toCFloat() > 70); // Probably |
| |
| dropout->eval(); |
| y = dropout->forward({x})[0]; |
| REQUIRE(y.data().sum().toCFloat() == 100); |
| } |
| |
| SECTION("param") { |
| auto model = NestedModel().make(); |
| REQUIRE(model->param("param").size(0) == 3); |
| REQUIRE(model->param("param").size(1) == 2); |
| REQUIRE(model->param("param").size(2) == 21); |
| REQUIRE(model->param("l1.bias").size(0) == 20); |
| REQUIRE(model->param("l1.weight").size(0) == 20); |
| REQUIRE(model->param("l1.weight").size(1) == 5); |
| REQUIRE(model->param("test.l1.bias").size(0) == 3); |
| REQUIRE(model->param("test.l1.weight").size(0) == 3); |
| REQUIRE(model->param("test.l1.weight").size(1) == 10); |
| REQUIRE(model->param("test.l2.bias").size(0) == 5); |
| REQUIRE(model->param("test.l2.weight").size(0) == 5); |
| REQUIRE(model->param("test.l2.weight").size(1) == 3); |
| REQUIRE(model->param("test.l3.bias").size(0) == 100); |
| REQUIRE(model->param("test.l3.weight").size(0) == 100); |
| REQUIRE(model->param("test.l3.weight").size(1) == 5); |
| } |
| } |
| |
| TEST_CASE("containers_cuda", "[cuda]") { |
| SECTION("1") { |
| auto model = Linear(5, 2).make(); |
| model->cuda(); |
| auto x = Var(at::CUDA(at::kFloat).randn({10, 5}), true); |
| auto y = model->forward({x})[0]; |
| Variable s = y.sum(); |
| |
| backward(s); |
| REQUIRE(y.ndimension() == 2); |
| REQUIRE(s.ndimension() == 0); |
| REQUIRE(y.size(0) == 10); |
| REQUIRE(y.size(1) == 2); |
| |
| REQUIRE(model->parameters()["weight"].grad().numel() == 2 * 5); |
| } |
| |
| SECTION("2") { |
| auto model = Linear(5, 2).make(); |
| model->cuda(); |
| model->cpu(); |
| auto x = Var(at::CPU(at::kFloat).randn({10, 5}), true); |
| auto y = model->forward({x})[0]; |
| Variable s = y.sum(); |
| |
| backward(s); |
| REQUIRE(y.ndimension() == 2); |
| REQUIRE(s.ndimension() == 0); |
| REQUIRE(y.size(0) == 10); |
| REQUIRE(y.size(1) == 2); |
| |
| REQUIRE(model->parameters()["weight"].grad().numel() == 2 * 5); |
| } |
| } |