blob: f4020df65eee04b1aecdeed6c08ea9b86321f74c [file] [log] [blame]
import torch
from torch import sparse
import itertools
import random
import unittest
from common import TestCase, run_tests
from common_nn import TEST_CUDA
from numbers import Number
def cpu_only(inner):
def outer(self, *args, **kwargs):
if self.is_cuda:
raise unittest.SkipTest("Test is CPU-only")
inner(self, *args, **kwargs)
return outer
class TestSparse(TestCase):
def setUp(self):
# These parameters control the various ways we can run the test.
# We will subclass and override this method to implement CUDA
# tests
self.is_cuda = False
self.is_uncoalesced = False
self.IndexTensor = torch.LongTensor
self.ValueTensor = torch.DoubleTensor
self.SparseTensor = torch.sparse.DoubleTensor
def _gen_sparse(self, d, nnz, with_size):
# TODO: Consider implementing this in the CUDA case by directly
# performing the operations on the GPU. You won't be able to
# use torch.rand/torch.randn in this case because they are
# CPU-only. If you do this, you can remove the is_cuda branch
# at the end.
#
# If you do this, be sure to update assert_uncoalesced too
if isinstance(with_size, Number):
with_size = [with_size] * d
if self.is_uncoalesced:
# We want to generate a tensor with a lot of uncoalesced
# entries to stress test whether or not we handle this
# (subtle) case correctly
v_size = [nnz * 2] + list(with_size[d:])
v = torch.randn(*v_size)
r = torch.rand(d, nnz)
# Repeat the indexes, so every position shows up twice
i = torch.cat([r, r], dim=1) * \
torch.Tensor(with_size[:d]).repeat(nnz * 2, 1).transpose(0, 1)
i = i.type(torch.LongTensor)
x = torch.sparse.DoubleTensor(i, v, torch.Size(with_size))
self.assert_uncoalesced(x)
else:
# Generate a sparse tensor with d sparse dimensions; the
# rest the dimensions with_size[d:] are dense.
v_size = [nnz] + list(with_size[d:])
v = torch.randn(*v_size)
i = torch.rand(d, nnz) * \
torch.Tensor(with_size[:d]).repeat(nnz, 1).transpose(0, 1)
i = i.type(torch.LongTensor)
x = torch.sparse.DoubleTensor(i, v, torch.Size(with_size))
if self.is_cuda:
return x.cuda(), i.cuda(), v.cuda()
else:
return x, i.clone(), v.clone()
def assert_uncoalesced(self, x):
"""
Test if a CPU tensor is uncoalesced. This is used to ensure
correctness of the uncoalesced tensor generation algorithm.
"""
assert not x.is_coalesced()
# Strategy: construct a new sparse tensor with the raw value
# field overwritten to a tensor of ones, coalesce it, and then
# check if any value entries are > 1 (which indicates that the
# original was uncoalesced.)
i = x._indices().clone()
v = x._values().clone().fill_(1)
y = torch.sparse.DoubleTensor(i, v, x.size())
z = self.safeCoalesce(y)
assert (z._values() > 1).sum() > 0
def randn(self, *args, **kwargs):
"""
Variant of torch.randn that also works in the TEST_CUDA case.
"""
# TODO: Put this in torch.cuda.randn
return self.ValueTensor(*args, **kwargs).normal_()
def test_basic(self):
x, i, v = self._gen_sparse(3, 10, 100)
self.assertEqual(i, x._indices())
self.assertEqual(v, x._values())
x, i, v = self._gen_sparse(3, 10, [100, 100, 100])
self.assertEqual(i, x._indices())
self.assertEqual(v, x._values())
self.assertEqual(x.ndimension(), 3)
self.assertEqual(x.coalesce()._nnz(), 10)
for i in range(3):
self.assertEqual(x.size(i), 100)
# Make sure we can access empty indices / values
x = self.SparseTensor()
self.assertEqual(x._indices().numel(), 0)
self.assertEqual(x._values().numel(), 0)
def test_to_dense(self):
i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
v = self.ValueTensor([2, 1, 3, 4])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
res = self.ValueTensor([
[[2, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[1, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 3, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 4]],
])
x.to_dense() # Tests double to_dense for memory corruption
x.to_dense()
x.to_dense()
self.assertEqual(res, x.to_dense())
def test_to_dense_hybrid(self):
i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
])
v = self.ValueTensor([[2, 3], [1, 2], [3, 4], [4, 5]])
x = self.SparseTensor(i, v, torch.Size([3, 4, 2]))
res = self.ValueTensor([
[[2, 3],
[0, 0],
[0, 0],
[0, 0]],
[[1, 2],
[0, 0],
[0, 0],
[0, 0]],
[[3, 4],
[0, 0],
[0, 0],
[4, 5]],
])
x.to_dense() # Tests double to_dense for memory corruption
x.to_dense()
x.to_dense()
self.assertEqual(res, x.to_dense())
def test_contig(self):
i = self.IndexTensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
])
v = self.ValueTensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
x = self.SparseTensor(i, v, torch.Size([100, 100]))
exp_i = self.IndexTensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
])
exp_v = self.ValueTensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.IndexTensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.ValueTensor([3, 2, 4, 1])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.ValueTensor([2, 1, 3, 4])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
# Duplicate indices
i = self.IndexTensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.ValueTensor([3, 2, 4, 1])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.IndexTensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.ValueTensor([6, 4])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
def test_contig_hybrid(self):
i = self.IndexTensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
])
v = self.ValueTensor([
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6],
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11],
])
x = self.SparseTensor(i, v, torch.Size([100, 100, 2]))
exp_i = self.IndexTensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
])
exp_v = self.ValueTensor([
[2, 3], [1, 2], [6, 7], [4, 5], [10, 11],
[3, 4], [5, 6], [9, 10], [8, 9], [7, 8],
])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.IndexTensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.ValueTensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.ValueTensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
# Duplicate indices
i = self.IndexTensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.ValueTensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.IndexTensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.ValueTensor([[6, 4, 5], [4, 3, 4]])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
def test_transpose(self):
x = self._gen_sparse(4, 20, 5)[0]
y = x.to_dense()
for i, j in itertools.combinations(range(4), 2):
x = x.transpose_(i, j)
y = y.transpose(i, j)
self.assertEqual(x.to_dense(), y)
x = x.transpose(i, j)
y = y.transpose(i, j)
self.assertEqual(x.to_dense(), y)
@cpu_only
def test_mm(self):
def test_shape(di, dj, dk):
x, _, _ = self._gen_sparse(2, 20, [di, dj])
t = torch.randn(di, dk)
y = torch.randn(dj, dk)
alpha = random.random()
beta = random.random()
res = torch.addmm(alpha, t, beta, x, y)
expected = torch.addmm(alpha, t, beta, x.to_dense(), y)
self.assertEqual(res, expected)
res = torch.addmm(t, x, y)
expected = torch.addmm(t, x.to_dense(), y)
self.assertEqual(res, expected)
res = torch.mm(x, y)
expected = torch.mm(x.to_dense(), y)
self.assertEqual(res, expected)
test_shape(10, 100, 100)
test_shape(100, 1000, 200)
test_shape(64, 10000, 300)
@cpu_only
def test_saddmm(self):
def test_shape(di, dj, dk):
x = self._gen_sparse(2, 20, [di, dj])[0]
t = self._gen_sparse(2, 20, [di, dk])[0]
y = torch.randn(dj, dk)
alpha = random.random()
beta = random.random()
res = torch.saddmm(alpha, t, beta, x, y)
expected = torch.addmm(alpha, t.to_dense(), beta, x.to_dense(), y)
self.assertEqual(res.to_dense(), expected)
res = torch.saddmm(t, x, y)
expected = torch.addmm(t.to_dense(), x.to_dense(), y)
self.assertEqual(res.to_dense(), expected)
res = torch.smm(x, y)
expected = torch.mm(x.to_dense(), y)
self.assertEqual(res.to_dense(), expected)
test_shape(7, 5, 3)
test_shape(1000, 100, 100)
test_shape(3000, 64, 300)
def test_dsmm(self):
def test_shape(di, dj, dk):
x = self._gen_sparse(2, 20, [di, dj])[0]
y = self.randn(dj, dk)
res = torch.dsmm(x, y)
expected = torch.mm(x.to_dense(), y)
self.assertEqual(res, expected)
test_shape(7, 5, 3)
test_shape(1000, 100, 100)
test_shape(3000, 64, 300)
def test_hsmm(self):
def test_shape(di, dj, dk):
x = self._gen_sparse(2, 20, [di, dj])[0]
y = self.randn(dj, dk)
res = torch.hsmm(x, y)
expected = torch.mm(x.to_dense(), y)
self.assertEqual(res.to_dense(), expected)
test_shape(7, 5, 3)
test_shape(1000, 100, 100)
test_shape(3000, 64, 300)
def _test_spadd_shape(self, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x, _, _ = self._gen_sparse(len(shape_i), 10, shape)
y = self.randn(*shape)
r = random.random()
res = torch.add(y, r, x)
expected = y + r * x.to_dense()
self.assertEqual(res, expected)
# Non contiguous dense tensor
s = list(shape)
s[0] = shape[-1]
s[-1] = shape[0]
y = self.randn(*s)
y.transpose_(0, len(s) - 1)
r = random.random()
res = torch.add(y, r, x)
expected = y + r * x.to_dense()
self.assertEqual(res, expected)
def test_spadd(self):
self._test_spadd_shape([5, 6])
self._test_spadd_shape([10, 10, 10])
self._test_spadd_shape([50, 30, 20])
self._test_spadd_shape([5, 5, 5, 5, 5, 5])
def test_spadd_hybrid(self):
self._test_spadd_shape([5, 6], [2, 3])
self._test_spadd_shape([10, 10, 10], [3])
self._test_spadd_shape([50, 30, 20], [2])
self._test_spadd_shape([5, 5, 5, 5, 5, 5], [2])
def _test_basic_ops_shape(self, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape)
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = x1.to_dense() + x2.to_dense()
self.assertEqual(y1.to_dense(), expected)
self.assertEqual(y2.to_dense(), expected)
y1 = x1 - x2
y2 = x1.clone()
y2.sub_(x2)
expected = x1.to_dense() - x2.to_dense()
self.assertEqual(y1.to_dense(), expected)
self.assertEqual(y2.to_dense(), expected)
y1 = x1 * x2
y2 = x1.clone()
y2.mul_(x2)
expected = x1.to_dense() * x2.to_dense()
self.assertEqual(y1.to_dense(), expected)
self.assertEqual(y2.to_dense(), expected)
y1 = x1 * 37.5
y2 = x1.clone()
y2.mul_(37.5)
expected = x1.to_dense() * 37.5
self.assertEqual(y1.to_dense(), expected)
self.assertEqual(y2.to_dense(), expected)
y1 = x1 / 37.5
y2 = x1.clone()
y2.div_(37.5)
expected = x1.to_dense() / 37.5
self.assertEqual(y1.to_dense(), expected)
self.assertEqual(y2.to_dense(), expected)
# TODO: add back inplace support
y1 = x1 ** 2
y2 = x1.clone()
y2 = y2.pow(2)
expected = x1.to_dense() ** 2
self.assertEqual(y1.to_dense(), expected)
self.assertEqual(y2.to_dense(), expected)
y = x1.clone()
y.zero_()
expected = torch.zeros(x1.size())
self.assertEqual(y.to_dense(), expected)
self.assertFalse(x1.is_coalesced())
y = x1.coalesce()
z = x1.coalesce()
self.assertFalse(x1.is_coalesced())
self.assertTrue(y.is_coalesced())
self.assertEqual(x1, y)
# check that coalesce is out of place
y._values().add_(1)
self.assertEqual(z._values() + 1, y._values())
def test_basic_ops(self):
self._test_basic_ops_shape([5, 6])
self._test_basic_ops_shape([10, 10, 10])
self._test_basic_ops_shape([50, 30, 20])
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5])
def test_basic_ops_hybrid(self):
self._test_basic_ops_shape([5, 6], [2, 3])
self._test_basic_ops_shape([10, 10, 10], [3])
self._test_basic_ops_shape([50, 30, 20], [2])
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5], [2])
def _test_sparse_mask_shape(self, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape)
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = x1.to_dense() + x2.to_dense()
self.assertEqual(y1.to_dense(), expected)
self.assertEqual(y2.to_dense(), expected)
def _test_sparse_mask_fixed(self):
i = self.IndexTensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.ValueTensor([1, 2, 3, 4])
x = self.SparseTensor(i, v, torch.Size([5, 4])).coalesce()
dense = self.ValueTensor([
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20],
])
exp_v = self.ValueTensor([7, 14, 3, 20])
res = dense._sparse_mask(x)
expected = self.SparseTensor(i, exp_v, torch.Size([5, 4]))
self.assertEqual(res, expected)
def test_sparse_mask(self):
self._test_sparse_mask_fixed()
self._test_sparse_mask_shape([5, 6])
self._test_sparse_mask_shape([10, 10, 10])
self._test_sparse_mask_shape([50, 30, 20])
self._test_sparse_mask_shape([5, 5, 5, 5, 5, 5])
def _test_sparse_mask_hybrid_fixed(self):
i = self.IndexTensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.ValueTensor([[1, 2], [2, 3], [3, 4], [4, 5]])
# TODO: This is also testing that, if coalesce is a no-op,
# the indices don't get permuted. I don't know if we actually
# want to give this invariant.
x = self.SparseTensor(i, v, torch.Size([5, 4, 2])).coalesce()
dense = self.ValueTensor([
[[1, 3], [2, 2], [3, 3], [4, 2]],
[[5, 7], [6, 7], [7, 9], [8, 9]],
[[9, 2], [10, 4], [11, 1], [12, 3]],
[[13, 5], [14, 1], [15, 1], [16, 6]],
[[17, 7], [18, 2], [19, 7], [20, 1]],
])
res = dense._sparse_mask(x)
exp_v = self.ValueTensor([[7, 9], [14, 1], [3, 3], [20, 1]])
expected = self.SparseTensor(i, exp_v, torch.Size([5, 4, 2]))
self.assertEqual(res, expected)
def test_sparse_mask_hybrid(self):
self._test_sparse_mask_hybrid_fixed()
self._test_sparse_mask_shape([5, 6], [2, 3])
self._test_sparse_mask_shape([10, 10, 10], [3])
self._test_sparse_mask_shape([50, 30, 20], [2])
self._test_sparse_mask_shape([5, 5, 5, 5, 5, 5], [2])
class TestUncoalescedSparse(TestSparse):
def setUp(self):
super(TestUncoalescedSparse, self).setUp()
self.is_uncoalesced = True
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
class TestCudaSparse(TestSparse):
def setUp(self):
super(TestCudaSparse, self).setUp()
self.is_cuda = True
self.IndexTensor = torch.cuda.LongTensor
self.ValueTensor = torch.cuda.DoubleTensor
self.SparseTensor = torch.cuda.sparse.DoubleTensor
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
class TestCudaUncoalescedSparse(TestCudaSparse):
def setUp(self):
super(TestCudaUncoalescedSparse, self).setUp()
self.is_uncoalesced = True
if __name__ == '__main__':
run_tests()