| import functools |
| import types |
| |
| import torch._C as _C |
| |
| TensorProtoDataType = _C._onnx.TensorProtoDataType |
| OperatorExportTypes = _C._onnx.OperatorExportTypes |
| |
| ONNX_ARCHIVE_MODEL_PROTO_NAME = "__MODEL_PROTO" |
| |
| |
| class ExportTypes: |
| PROTOBUF_FILE = 1 |
| ZIP_ARCHIVE = 2 |
| COMPRESSED_ZIP_ARCHIVE = 3 |
| DIRECTORY = 4 |
| |
| |
| def _export(*args, **kwargs): |
| from torch.onnx import utils |
| return utils._export(*args, **kwargs) |
| |
| |
| def export(*args, **kwargs): |
| from torch.onnx import utils |
| return utils.export(*args, **kwargs) |
| |
| |
| def export_to_pretty_string(*args, **kwargs): |
| from torch.onnx import utils |
| return utils.export_to_pretty_string(*args, **kwargs) |
| |
| |
| def _export_to_pretty_string(*args, **kwargs): |
| from torch.onnx import utils |
| return utils._export_to_pretty_string(*args, **kwargs) |
| |
| |
| def _optimize_trace(trace, operator_export_type): |
| from torch.onnx import utils |
| trace.set_graph(utils._optimize_graph(trace.graph(), operator_export_type)) |
| |
| |
| def set_training(*args, **kwargs): |
| from torch.onnx import utils |
| return utils.set_training(*args, **kwargs) |
| |
| |
| def _run_symbolic_function(*args, **kwargs): |
| from torch.onnx import utils |
| return utils._run_symbolic_function(*args, **kwargs) |
| |
| |
| def _run_symbolic_method(*args, **kwargs): |
| from torch.onnx import utils |
| return utils._run_symbolic_method(*args, **kwargs) |
| |
| |
| def symbolic_override(symbolic_fn): |
| r""" |
| Decorator to override ONNX export of the a function with specified subgraph. |
| |
| Effectively allows to attach symbolic() implementation to an arbitrary |
| python function or autograd.Function. Requirements for the decorated |
| function: |
| - being non-member function or autograd.Function |
| - positional inputs are Tensors or (nested) lists or tuples of |
| them (similar requirement to NestedIOFunction) |
| - outputs are similarly Tensors or (nested) lists or tuples of them |
| - non-tensor typed values should be keyword arguments both in definition |
| and when called |
| |
| Example usage: |
| |
| ``` |
| def symb(g, x, y): |
| return g.op('Sum', x, y[0], y[1]) |
| |
| @symbolic_override(symb) |
| def foo(x, y): |
| return x + y[0] + y[1] |
| ``` |
| """ |
| def decorator(fn): |
| import torch |
| from torch.autograd import function |
| |
| def wrapper(*args, **kwargs): |
| tstate = torch._C._get_tracing_state() |
| if not tstate: |
| return fn(*args, **kwargs) |
| |
| flat_args = tuple(function._iter_tensors_permissive(args)) |
| arg_values = [torch._C._get_value_trace(x) if isinstance(x, torch.Tensor) else x for x in flat_args] |
| |
| # This must come after the calls to get_value_trace, lest we |
| # lose information due to in-place operations. |
| output_vars = fn(*args, **kwargs) |
| |
| symbolic_args = function._unflatten(arg_values, args) |
| output_vals = symbolic_fn(tstate.graph(), *symbolic_args, **kwargs) |
| |
| for var, val in zip( |
| function._iter_tensors(output_vars), |
| function._iter_jit_values(output_vals)): |
| val.inferTypeFrom(var.data) |
| torch._C._set_value_trace(var, val) |
| |
| return output_vars |
| |
| # fn might be autograd.Function too, in this case wrapping doesn't work |
| if isinstance(fn, types.FunctionType): |
| wrapper = functools.wraps(fn)(wrapper) |
| |
| return wrapper |
| return decorator |