|  | #include "caffe2/operators/tile_op.h" | 
|  |  | 
|  | namespace caffe2 { | 
|  |  | 
|  | REGISTER_CPU_OPERATOR(Tile, TileOp<CPUContext>); | 
|  | REGISTER_CPU_OPERATOR(TileGradient, TileGradientOp<float, CPUContext>); | 
|  |  | 
|  | OPERATOR_SCHEMA(Tile) | 
|  | .NumInputs(1, 3) | 
|  | .NumOutputs(1) | 
|  | .TensorInferenceFunction( | 
|  | [](const OperatorDef& def, const vector<TensorShape>& in) { | 
|  | vector<TensorShape> out(1); | 
|  | out[0] = TensorShape(in[0]); | 
|  | ArgumentHelper helper(def); | 
|  |  | 
|  | auto tiles = helper.GetSingleArgument<int32_t>("tiles", 1); | 
|  | auto axis = helper.GetSingleArgument<int32_t>("axis", 0); | 
|  | if (in.size() > 1) { | 
|  | // Tile or axis is specified as input; we can't determine | 
|  | // the size | 
|  | out[0].set_unknown_shape(true); | 
|  | } else { | 
|  | const auto canonical_axis = | 
|  | canonical_axis_index_(axis, out[0].dims().size()); | 
|  | out[0].set_dims( | 
|  | canonical_axis, out[0].dims().Get(canonical_axis) * tiles); | 
|  | } | 
|  | return out; | 
|  | }) | 
|  | .SetDoc(R"DOC( | 
|  | Constructs a tensor by tiling a given tensor along a specified axis. This operation creates a new tensor by replicating the input tensor a number of times specified by the `tiles` argument along the `axis` dimension. The output tensor's `axis` dimension has $(X.dims(axis) * tiles)$ elements. | 
|  |  | 
|  | Github Links: | 
|  | - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/tile_op.cc | 
|  |  | 
|  | <details> | 
|  |  | 
|  | <summary> <b>Example</b> </summary> | 
|  |  | 
|  | **Code** | 
|  |  | 
|  | ``` | 
|  |  | 
|  | workspace.ResetWorkspace() | 
|  |  | 
|  | op = core.CreateOperator( | 
|  | "Tile", | 
|  | ["X", "tiles", "axis"], | 
|  | ["Y"] | 
|  | ) | 
|  |  | 
|  | workspace.FeedBlob("X", np.random.randint(10, size=(5,5))) | 
|  | workspace.FeedBlob("tiles", np.array([5]).astype(np.int32)) | 
|  | workspace.FeedBlob("axis", np.array([1]).astype(np.int32)) | 
|  | print("X:", workspace.FetchBlob("X")) | 
|  | workspace.RunOperatorOnce(op) | 
|  | print("Y:", workspace.FetchBlob("Y")) | 
|  |  | 
|  | ``` | 
|  |  | 
|  | **Result** | 
|  |  | 
|  | ``` | 
|  |  | 
|  | X: | 
|  | [[9 1 7 1 3] | 
|  | [2 3 6 2 5] | 
|  | [0 9 2 6 4] | 
|  | [5 8 1 5 9] | 
|  | [2 0 1 3 7]] | 
|  | Y: | 
|  | [[9 1 7 1 3 9 1 7 1 3 9 1 7 1 3 9 1 7 1 3 9 1 7 1 3] | 
|  | [2 3 6 2 5 2 3 6 2 5 2 3 6 2 5 2 3 6 2 5 2 3 6 2 5] | 
|  | [0 9 2 6 4 0 9 2 6 4 0 9 2 6 4 0 9 2 6 4 0 9 2 6 4] | 
|  | [5 8 1 5 9 5 8 1 5 9 5 8 1 5 9 5 8 1 5 9 5 8 1 5 9] | 
|  | [2 0 1 3 7 2 0 1 3 7 2 0 1 3 7 2 0 1 3 7 2 0 1 3 7]] | 
|  |  | 
|  | ``` | 
|  |  | 
|  | </details> | 
|  |  | 
|  | )DOC") | 
|  | .Arg("tiles", "(*int*): number of replicas") | 
|  | .Arg("axis", "(*int*): axis to replicate along") | 
|  | .Input(0, "X", "(*Tensor*): input tensor") | 
|  | .Input(1, "tiles", "(*Tensor`<int>`*): [OPTIONAL] number of replicas (overrides `tiles` argument)") | 
|  | .Input(2, "axis", "(*Tensor`<int>`*): [OPTIONAL] axis to replicate along (overrides `axis` argument)") | 
|  | .Output( | 
|  | 0, | 
|  | "Y", | 
|  | "(*Tensor*): output tensor") | 
|  | .InheritOnnxSchema("Tile"); | 
|  |  | 
|  | OPERATOR_SCHEMA(TileGradient).NumInputs(1, 3).NumOutputs(1); | 
|  |  | 
|  | class GetTileGradient : public GradientMakerBase { | 
|  | using GradientMakerBase::GradientMakerBase; | 
|  | vector<OperatorDef> GetGradientDefs() override { | 
|  | // Check whether the tiles/axis information was | 
|  | // passed through input arguments | 
|  | vector<std::string> g_inputs({GO(0)}); | 
|  | if (Def().input_size() > 1) { | 
|  | g_inputs.push_back(I(1)); | 
|  | } | 
|  | if (Def().input_size() > 2) { | 
|  | g_inputs.push_back(I(2)); | 
|  | } | 
|  | return SingleGradientDef( | 
|  | "TileGradient", "", g_inputs, vector<string>{GI(0)}); | 
|  | } | 
|  | }; | 
|  |  | 
|  | REGISTER_GRADIENT(Tile, GetTileGradient); | 
|  |  | 
|  | } // namespace caffe2 |