| from numbers import Integral |
| |
| from .module import Module |
| from .. import functional as F |
| from .utils import _pair |
| |
| |
| class _UpsamplingBase(Module): |
| |
| def __init__(self, size=None, scale_factor=None): |
| super(_UpsamplingBase, self).__init__() |
| if size is None and scale_factor is None: |
| raise ValueError('either size or scale_factor should be defined') |
| if scale_factor is not None and not isinstance(scale_factor, Integral): |
| raise ValueError('scale_factor must be of integer type') |
| self.size = _pair(size) |
| self.scale_factor = scale_factor |
| |
| def __repr__(self): |
| if self.scale_factor is not None: |
| info = 'scale_factor=' + str(self.scale_factor) |
| else: |
| info = 'size=' + str(self.size) |
| return self.__class__.__name__ + '(' + info + ')' |
| |
| |
| class UpsamplingNearest2d(_UpsamplingBase): |
| """ |
| Applies a 2D nearest neighbor upsampling to an input signal composed of several input |
| channels. |
| |
| To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor` |
| as it's constructor argument. |
| |
| When `size` is given, it is the output size of the image (h, w). |
| |
| Args: |
| size (tuple, optional): a tuple of ints (H_out, W_out) output sizes |
| scale_factor (int, optional): the multiplier for the image height / width |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` |
| - Output: :math:`(N, C, H_{out}, W_{out})` where |
| :math:`H_{out} = floor(H_{in} * scale\_factor)` |
| :math:`W_{out} = floor(W_{in} * scale\_factor)` |
| |
| Examples:: |
| |
| >>> inp |
| Variable containing: |
| (0 ,0 ,.,.) = |
| 1 2 |
| 3 4 |
| [torch.FloatTensor of size 1x1x2x2] |
| |
| >>> m = nn.UpsamplingNearest2d(scale_factor=2) |
| >>> m(inp) |
| Variable containing: |
| (0 ,0 ,.,.) = |
| 1 1 2 2 |
| 1 1 2 2 |
| 3 3 4 4 |
| 3 3 4 4 |
| [torch.FloatTensor of size 1x1x4x4] |
| |
| """ |
| |
| def forward(self, input): |
| return F.upsample_nearest(input, self.size, self.scale_factor) |
| |
| |
| class UpsamplingBilinear2d(_UpsamplingBase): |
| """ |
| Applies a 2D bilinear upsampling to an input signal composed of several input |
| channels. |
| |
| To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor` |
| as it's constructor argument. |
| |
| When `size` is given, it is the output size of the image (h, w). |
| |
| Args: |
| size (tuple, optional): a tuple of ints (H_out, W_out) output sizes |
| scale_factor (int, optional): the multiplier for the image height / width |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` |
| - Output: :math:`(N, C, H_{out}, W_{out})` where |
| :math:`H_{out} = floor(H_{in} * scale\_factor)` |
| :math:`W_{out} = floor(W_{in} * scale\_factor)` |
| |
| Examples:: |
| |
| >>> inp |
| Variable containing: |
| (0 ,0 ,.,.) = |
| 1 2 |
| 3 4 |
| [torch.FloatTensor of size 1x1x2x2] |
| |
| >>> m = nn.UpsamplingBilinear2d(scale_factor=2) |
| >>> m(inp) |
| Variable containing: |
| (0 ,0 ,.,.) = |
| 1.0000 1.3333 1.6667 2.0000 |
| 1.6667 2.0000 2.3333 2.6667 |
| 2.3333 2.6667 3.0000 3.3333 |
| 3.0000 3.3333 3.6667 4.0000 |
| [torch.FloatTensor of size 1x1x4x4] |
| |
| """ |
| |
| def forward(self, input): |
| return F.upsample_bilinear(input, self.size, self.scale_factor) |