blob: ae4a082b63f9a7a7a430d2e116f96ebd8d9173e9 [file] [log] [blame]
#include "torch/csrc/autograd/python_variable.h"
#include <structmember.h>
#include "THP.h"
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/Types.h"
#include "torch/csrc/autograd/python_cpp_function.h"
#include "torch/csrc/autograd/python_hook.h"
#include "torch/csrc/autograd/functions/accumulate_grad.h"
#include "torch/csrc/cuda/AutoGPU.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/autograd/variable.h"
using namespace at;
using namespace torch::autograd;
PyObject *THPVariableClass = NULL;
// Creates a new Python object for a Variable. The Variable must not already
// have a PyObject* associated with it.
static PyObject* THPVariable_NewWithVar(PyTypeObject* type, Variable var)
{
PyObject* obj = type->tp_alloc(type, 0);
if (obj) {
auto v = (THPVariable*) obj;
new (&v->cdata) Variable(std::move(var));
v->cdata.get()->pyobj = obj;
if (auto fn = dynamic_cast<PyFunction*>(v->cdata.grad_fn().get())) {
// Create a new reference to the THPFunction. This ensures that ref count
// of the THPFunction is at least the number of referring THPVariables.
v->cdata.get()->_grad_fn = THPFunction_asFunction((THPFunction*)fn->obj);
}
}
return obj;
}
PyObject * THPVariable_Wrap(Variable var)
{
if (!var.defined()) {
Py_RETURN_NONE;
}
if (auto obj = var.get()->pyobj) {
Py_INCREF(obj);
return obj;
}
return THPVariable_NewWithVar((PyTypeObject *)THPVariableClass, std::move(var));
}
// This function DOES NOT steal a reference to data
PyObject * THPVariable_NewVolatile(PyObject *data)
{
Variable v = make_variable(torch::createTensor(data), false, true);
PyObject* obj = THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, std::move(v));
if (obj) {
((THPVariable*)obj)->data = data;
Py_INCREF(data);
}
return obj;
}
// This function DOES NOT steal a reference to data
PyObject * THPVariable_NewLeaf(PyObject *data)
{
Variable v = make_variable(torch::createTensor(data));
PyObject* obj = THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, std::move(v));
if (obj) {
((THPVariable*)obj)->data = data;
Py_INCREF(data);
}
return obj;
}
static int THPVariable_traverse(THPVariable *self, visitproc visit, void *arg)
{
Py_VISIT(self->data);
Py_VISIT(self->backward_hooks);
if (self->cdata.defined()) {
// Only visit this if we actually own it (no one else use the shared pointer)
auto& grad_fn = self->cdata.grad_fn();
if (grad_fn.use_count() == 1) {
if (auto fn = dynamic_cast<PyFunction*>(grad_fn.get())) {
Py_VISIT(fn->obj);
} else {
// visit hooks in C++ implemented autograd functions
for (auto& hook : grad_fn->pre_hooks) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
for (auto& hook : grad_fn->post_hooks) {
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
}
}
for (auto& hook : self->cdata.hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
}
return 0;
}
static int THPVariable_clear(THPVariable *self)
{
Py_CLEAR(self->data);
Py_CLEAR(self->backward_hooks);
if (self->cdata.defined()) {
if (auto grad_acc = self->cdata.get()->grad_accumulator.lock()) {
grad_acc->pre_hooks.clear();
}
self->cdata.get()->pyobj = nullptr;
}
self->cdata.reset();
return 0;
}
static void THPVariable_dealloc(THPVariable* self)
{
PyObject_GC_UnTrack(self);
THPVariable_clear(self);
self->cdata.~Variable();
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject *THPVariable_pynew(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
THPObjectPtr _data;
PyObject *data = NULL;
PyObject *grad_fn = NULL;
char is_volatile = 0;
char requires_grad = 0;
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbO", (char**)accepted_args,
&data, &requires_grad, &is_volatile, &grad_fn))
return NULL;
if (grad_fn == Py_None)
grad_fn = NULL;
if (data == NULL || data == Py_None) {
// For legacy serialization code, create an empty tensor temporarily.
at::Tensor tensor = at::CPU(at::kFloat).tensor();
_data = torch::createPyObject(tensor);
data = _data.get();
}
THPUtils_assert(!(is_volatile && requires_grad),
"Variable can't be volatile and require_grad at the same time!");
THPUtils_assert(!grad_fn || THPFunction_Check(grad_fn),
"Variable _grad_fn has to be a Function object or None, but got %s",
THPUtils_typename(grad_fn));
THPUtils_assert(THPModule_isTensor(data), "Variable data has to "
"be a tensor, but got %s", THPUtils_typename(data));
Variable var;
if (grad_fn) {
auto grad_fn_ = THPFunction_asFunction((THPFunction*)grad_fn);
var = make_variable(torch::createTensor(data), grad_fn_);
} else {
var = make_variable(torch::createTensor(data), requires_grad, is_volatile);
}
PyObject* self = THPVariable_NewWithVar(type, std::move(var));
if (self) {
((THPVariable*)self)->data = data;
Py_INCREF(data);
}
return self;
}
int THPVariable_pyinit(PyObject *self, PyObject *args, PyObject *kwds)
{
// Ensures that calls to Variable() and subclasses contain data argument.
// The 'data' argument is optional in __new__ to handle legacy serialized
// Variables.
PyObject *data;
PyObject *grad_fn = NULL;
char is_volatile = 0;
char requires_grad = 0;
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbO", (char**)accepted_args,
&data, &requires_grad, &is_volatile, &grad_fn))
return -1;
return 0;
}
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
PyObject *THPVariable_get_version(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& var = self->cdata;
return PyInt_FromLong(var.current_version());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_grad_fn(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& var = self->cdata;
if (!var.grad_fn()) {
Py_RETURN_NONE;
}
return functionToPyObject(var.grad_fn());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_grad_fn(THPVariable *self, PyObject *obj)
{
HANDLE_TH_ERRORS
THPUtils_assertRet(-1, obj == Py_None, "_grad_fn can be only set to None");
self->cdata.get()->_grad_fn = nullptr;
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_is_leaf(THPVariable *self)
{
HANDLE_TH_ERRORS
return PyBool_FromLong(!self->cdata.grad_fn());
END_HANDLE_TH_ERRORS
}
PyObject * THPVariable_get_data(THPVariable *self)
{
HANDLE_TH_ERRORS
if (!self->data) {
self->data = torch::createPyObject(self->cdata.data());
}
Py_XINCREF(self->data);
return self->data;
END_HANDLE_TH_ERRORS
}
namespace {
// XXX: This is a hack to access private TensorImpl::type_
// http://bloglitb.blogspot.com/2011/12/access-to-private-members-safer.html
// This is currently needed because module.float() changes the type of the
// data field of each variable. We should fix this and not allow changing the
// type of var.data.
template<typename Tag, typename Tag::type M>
struct Rob {
friend typename Tag::type get(Tag) {
return M;
}
};
struct TensorImpl_Type {
typedef Type* TensorImpl::*type;
friend type get(TensorImpl_Type);
};
template struct Rob<TensorImpl_Type, &TensorImpl::type_>;
}
int THPVariable_set_data(THPVariable *self, PyObject *data)
{
HANDLE_TH_ERRORS
THPUtils_assertRet(-1, THPModule_isTensor(data), "Variable data has to "
"be a tensor, but got %s", THPUtils_typename(data));
Py_INCREF(data);
Py_XDECREF(self->data);
self->data = data;
Tensor tensor = torch::createTensor(data);
if (&self->cdata.data().type() != &tensor.type()) {
// we change the type of var.data so we must change the type of var
auto newType = VariableImpl::getType(tensor);
self->cdata.get()->*get(TensorImpl_Type()) = newType;
}
self->cdata.data() = tensor;
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_grad(THPVariable *self)
{
HANDLE_TH_ERRORS
return THPVariable_Wrap(self->cdata.grad());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_grad(THPVariable *self, PyObject *other)
{
HANDLE_TH_ERRORS
auto& var = self->cdata;
if (other == Py_None) {
var.grad().reset();
return 0;
}
THPUtils_assertRet(-1, THPVariable_Check(other),
"expected Variable or None (got %s)", THPUtils_typename(other));
THPUtils_assertRet(-1, self != (THPVariable*)other,
"can't assign Variable as its own grad");
auto& data = var.data();
auto& other_var = ((THPVariable*)other)->cdata;
auto& other_data = other_var.data();
// Make sure the data is ok
THPUtils_assertRet(-1, other_data.type().ID() == data.type().ID(),
"assigned grad has data of a different type");
THPUtils_assertRet(-1, other_data.type().isCuda() == data.type().isCuda(),
"assigned grad has data located on a different device");
if (data.type().isCuda()) {
THPUtils_assertRet(-1, other_data.get_device() == data.get_device(),
"assigned grad has data located on a different device");
}
THPUtils_assertRet(-1, other_data.sizes().vec() == data.sizes().vec(),
"assigned grad has data of a different size");
var.grad() = other_var;
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_volatile(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& var = self->cdata;
return PyBool_FromLong(var.is_volatile());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_volatile(THPVariable *self, PyObject *obj)
{
HANDLE_TH_ERRORS
THPUtils_assertRet(-1, PyBool_Check(obj), "volatile must be a bool");
THPUtils_assertRet(-1, !self->cdata.grad_fn(),
"volatile can only be set on leaf variables");
self->cdata.is_volatile() = (obj == Py_True);
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_output_nr(THPVariable *self)
{
HANDLE_TH_ERRORS
return PyInt_FromLong(self->cdata.output_nr());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_requires_grad(THPVariable *self)
{
HANDLE_TH_ERRORS
return PyBool_FromLong(self->cdata.requires_grad());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_requires_grad(THPVariable *self, PyObject *obj)
{
HANDLE_TH_ERRORS
THPUtils_assertRet(-1, PyBool_Check(obj), "requires_grad must be a bool");
auto& var = self->cdata;
if (var.grad_fn()) {
const char *hint = "";
if (obj == Py_False) {
hint = " If you want to use a computed variable in a subgraph "
"that doesn't require differentiation use "
"var_no_grad = var.detach().";
}
THPUtils_setError("you can only change requires_grad flags of leaf variables.%s", hint);
return -1;
}
var.requires_grad() = (obj == Py_True);
if (auto grad_accumulator = var.get()->grad_accumulator.lock()) {
grad_accumulator->is_executable = var.requires_grad();
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_backwards_hooks(THPVariable *self)
{
HANDLE_TH_ERRORS
if (self->backward_hooks) {
Py_INCREF(self->backward_hooks);
return self->backward_hooks;
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
int THPVariable_set_backwards_hooks(THPVariable *self, PyObject *obj)
{
HANDLE_TH_ERRORS
if (obj == Py_None) {
obj = nullptr;
}
Py_XINCREF(obj);
Py_XDECREF(self->backward_hooks);
self->backward_hooks = obj;
self->cdata.hooks().clear();
if (obj) {
self->cdata.hooks().emplace_back(new PyFunctionPreHook(obj, 0));
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_base(THPVariable *self)
{
HANDLE_TH_ERRORS
if (self->cdata.is_view()) {
return THPVariable_Wrap(self->cdata.base());
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static struct PyGetSetDef THPVariable_properties[] = {
{"_version", (getter)THPVariable_get_version, NULL, NULL, NULL},
{"grad_fn", (getter)THPVariable_get_grad_fn, NULL, NULL, NULL},
{"_grad_fn", (getter)THPVariable_get_grad_fn, (setter)THPVariable_set_grad_fn, NULL, NULL},
{"is_leaf", (getter)THPVariable_is_leaf, NULL, NULL, NULL},
{"data", (getter)THPVariable_get_data, (setter)THPVariable_set_data, NULL, NULL},
{"_grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, NULL, NULL}, // only for legacy reasons
{"grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, NULL, NULL},
{"_base", (getter)THPVariable_get_base, NULL, NULL, NULL},
{"volatile", (getter)THPVariable_get_volatile, (setter)THPVariable_set_volatile, NULL, NULL},
{"output_nr", (getter)THPVariable_get_output_nr, NULL, NULL, NULL},
{"requires_grad", (getter)THPVariable_get_requires_grad, (setter)THPVariable_set_requires_grad, NULL, NULL},
{"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, NULL, NULL},
{NULL}
};
PyTypeObject THPVariableType = {
PyVarObject_HEAD_INIT(NULL, 0)
"torch._C._VariableBase", /* tp_name */
sizeof(THPVariable), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPVariable_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
NULL, /* tp_doc */
(traverseproc)THPVariable_traverse, /* tp_traverse */
(inquiry)THPVariable_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
THPVariable_properties, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
THPVariable_pyinit, /* tp_init */
0, /* tp_alloc */
THPVariable_pynew /* tp_new */
};
namespace torch { namespace autograd {
extern PyMethodDef variable_methods[];
}}
bool THPVariable_initModule(PyObject *module)
{
static std::vector<PyMethodDef> methods;
THPUtils_addPyMethodDefs(methods, torch::autograd::variable_methods);
THPVariableType.tp_methods = methods.data();
if (PyType_Ready(&THPVariableType) < 0)
return false;
Py_INCREF(&THPVariableType);
PyModule_AddObject(module, "_VariableBase", (PyObject *)&THPVariableType);
return true;
}