blob: 5a1ce12a9615c8be3ef6f55baa6d5674ae15d08e [file] [log] [blame]
#include "ProcessGroupMPI.hpp"
#include <map>
#include <mpi-ext.h> // Needed for CUDA-aware check
namespace c10d {
#define MPI_CHECK(cmd) \
do { \
int mpiStatus = cmd; \
if (mpiStatus != MPI_SUCCESS) { \
std::string err = "MPI error in: " + std::string(__FILE__) + ":" + \
std::to_string(__LINE__) + \
", with error code: " + std::to_string(mpiStatus); \
throw std::runtime_error(err); \
} \
} while (0)
namespace {
// Op mapping
std::map<ReduceOp, MPI_Op> mpiOp = {
{ReduceOp::MIN, MPI_MIN},
{ReduceOp::MAX, MPI_MAX},
{ReduceOp::SUM, MPI_SUM},
{ReduceOp::PRODUCT, MPI_PROD},
};
// Type mapping
std::map<at::ScalarType, MPI_Datatype> mpiDatatype = {
{at::kByte, MPI_UNSIGNED_CHAR},
{at::kChar, MPI_CHAR},
{at::kDouble, MPI_DOUBLE},
{at::kFloat, MPI_FLOAT},
{at::kInt, MPI_INT},
{at::kLong, MPI_LONG},
{at::kShort, MPI_SHORT},
};
// Checking CUDA-aware MPI support
bool cudaAwareMpiCheck() {
// Run time check
#if defined(MPIX_CUDA_AWARE_SUPPORT)
if (MPIX_Query_cuda_support() == 1) {
return true;
} else {
return false;
}
#else // !defined(MPIX_CUDA_AWARE_SUPPORT)
return false;
#endif // MPIX_CUDA_AWARE_SUPPORT
}
// Checking the input tensor's validity
void checkSingleTensor(const std::vector<at::Tensor>& tensors) {
if (tensors.size() != 1) {
throw std::runtime_error(
"MPI process group only supports a single "
"tensor op");
}
if (!tensors[0].is_contiguous()) {
throw std::runtime_error("input tensor has to be contiguous");
}
if (tensors[0].is_cuda() && !cudaAwareMpiCheck()) {
throw std::runtime_error(
"CUDA tensor detected and the MPI used doesn't "
"have CUDA-aware MPI support");
}
}
void mpiExit() {
MPI_CHECK(MPI_Finalize());
}
} // namespace
// ProcessGroupMPI::WorkMPI
ProcessGroupMPI::WorkMPI::WorkMPI() : completed_(false) {}
ProcessGroupMPI::WorkMPI::~WorkMPI() {}
bool ProcessGroupMPI::WorkMPI::isCompleted() const {
return completed_;
}
bool ProcessGroupMPI::WorkMPI::isSuccess() const {
return !workException_;
}
void ProcessGroupMPI::WorkMPI::synchronize() {}
bool ProcessGroupMPI::WorkMPI::wait() {
std::unique_lock<std::mutex> lock(workMutex_);
while (!completed_) {
workCV_.wait(lock);
}
return isSuccess();
}
void ProcessGroupMPI::WorkMPI::finish() {
{
std::unique_lock<std::mutex> lock(workMutex_);
completed_ = true;
}
workCV_.notify_all();
}
void ProcessGroupMPI::WorkMPI::finishWithException(
std::exception_ptr caughtWorkException) {
{
std::unique_lock<std::mutex> lock(workMutex_);
completed_ = true;
workException_ = caughtWorkException;
}
workCV_.notify_all();
}
const std::exception& ProcessGroupMPI::WorkMPI::exception() const {
try {
std::rethrow_exception(workException_);
} catch (const std::exception& e) {
return e;
}
}
// Static global states
int ProcessGroupMPI::numProcessGroups_ = 0;
int ProcessGroupMPI::mpiThreadSupport_ = 0;
std::mutex ProcessGroupMPI::pgGlobalMutex_;
// We only want to initialize once
std::once_flag ProcessGroupMPI::onceFlagInitMPI;
void ProcessGroupMPI::initMPIOnce() {
// Initialize MPI environment
std::call_once(onceFlagInitMPI, []() {
MPI_CHECK(MPI_Init_thread(
nullptr, nullptr, MPI_THREAD_MULTIPLE, &mpiThreadSupport_));
if (mpiThreadSupport_ < MPI_THREAD_SERIALIZED) {
throw std::runtime_error(
"Used MPI implementation doesn't have the "
"minimum level of threading support: "
"MPI_THREAD_SERIALIZED. This is required by "
"c10d package");
}
if (std::atexit(mpiExit)) {
throw std::runtime_error("Fail to register the MPI exit handler");
}
});
}
std::shared_ptr<ProcessGroupMPI> ProcessGroupMPI::createProcessGroupMPI() {
// Once initialization
initMPIOnce();
int rank = -1;
int size = -1;
// Update the world size and rank
MPI_CHECK(MPI_Comm_size(MPI_COMM_WORLD, &size));
MPI_CHECK(MPI_Comm_rank(MPI_COMM_WORLD, &rank));
if (rank < 0 || size < 0) {
throw std::runtime_error("Failed to get the world_size / rank");
}
return std::make_shared<ProcessGroupMPI>(rank, size);
}
ProcessGroupMPI::ProcessGroupMPI(int rank, int size)
: ProcessGroup(rank, size), stop_(false) {
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
if (mpiThreadSupport_ != MPI_THREAD_MULTIPLE && numProcessGroups_ >= 1) {
throw std::runtime_error(
"More than one process group created, "
"this is not supported due to the used MPI "
"implementation doesn't provide the full support "
"of multi-threading");
}
// increase the total PG count
++numProcessGroups_;
globalLock.unlock();
// Start the worker thread accepting MPI calls
workerThread_ = std::thread(&ProcessGroupMPI::runLoop, this);
}
ProcessGroupMPI::~ProcessGroupMPI() {
destroy();
}
void ProcessGroupMPI::destroy() {
std::unique_lock<std::mutex> lock(pgMutex_);
while (!queue_.empty()) {
queueConsumeCV_.wait(lock);
}
// Queue is empty, signal stop
stop_ = true;
// Release lock to allow threads to terminate
queueProduceCV_.notify_all();
lock.unlock();
// Join the single worker thread
workerThread_.join();
// Decrease the number of PG created
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
--numProcessGroups_;
}
void ProcessGroupMPI::abort() {
destroy();
MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
}
void ProcessGroupMPI::runLoop() {
std::unique_lock<std::mutex> lock(pgMutex_);
while (!stop_) {
if (queue_.empty()) {
queueProduceCV_.wait(lock);
continue;
}
auto workTuple = std::move(queue_.front());
queue_.pop_front();
queueConsumeCV_.notify_one();
auto& workEntry = std::get<0>(workTuple);
auto& work = std::get<1>(workTuple);
lock.unlock();
try {
workEntry->run(workEntry);
work->finish();
} catch (...) {
work->finishWithException(std::current_exception());
}
lock.lock();
}
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupMPI::enqueue(
std::unique_ptr<WorkEntry> entry) {
auto work = std::make_shared<WorkMPI>();
std::unique_lock<std::mutex> lock(pgMutex_);
queue_.push_back(std::make_tuple(std::move(entry), work));
queueProduceCV_.notify_one();
return work;
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupMPI::broadcast(
std::vector<at::Tensor>& tensors,
const BroadcastOptions& opts) {
checkSingleTensor(tensors);
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[opts](std::unique_ptr<WorkEntry>& entry) {
auto data = (*entry->src)[0];
MPI_CHECK(MPI_Bcast(
data.data_ptr(),
data.numel(),
mpiDatatype.at(data.type().scalarType()),
opts.rootRank,
MPI_COMM_WORLD));
};
auto entry = std::unique_ptr<WorkEntry>(
new WorkEntry(&tensors, nullptr, std::move(runFunc)));
return enqueue(std::move(entry));
}
std::shared_ptr<ProcessGroup::Work> ProcessGroupMPI::allreduce(
std::vector<at::Tensor>& tensors,
const AllreduceOptions& opts) {
checkSingleTensor(tensors);
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[opts](std::unique_ptr<WorkEntry>& entry) {
auto data = (*entry->src)[0];
MPI_CHECK(MPI_Allreduce(
MPI_IN_PLACE,
data.data_ptr(),
data.numel(),
mpiDatatype.at(data.type().scalarType()),
mpiOp.at(opts.reduceOp),
MPI_COMM_WORLD));
};
auto entry = std::unique_ptr<WorkEntry>(
new WorkEntry(&tensors, nullptr, std::move(runFunc)));
return enqueue(std::move(entry));
}
} // namespace c10d