| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS |
| #include <ATen/core/Tensor.h> |
| #include <ATen/Dispatch.h> |
| #include <ATen/Parallel.h> |
| #include <ATen/TensorMeta.h> |
| #include <ATen/TensorOperators.h> |
| #include <ATen/TensorSubclassLikeUtils.h> |
| |
| #include <ATen/native/BatchLinearAlgebra.h> |
| #include <ATen/native/LinearAlgebraUtils.h> |
| #include <ATen/native/Resize.h> |
| #include <ATen/native/cpu/zmath.h> |
| |
| #include <c10/util/irange.h> |
| |
| #include <utility> |
| #include <vector> |
| |
| #ifndef AT_PER_OPERATOR_HEADERS |
| #include <ATen/Functions.h> |
| #include <ATen/NativeFunctions.h> |
| #else |
| #include <ATen/ops/_cholesky_solve_helper.h> |
| #include <ATen/ops/_cholesky_solve_helper_native.h> |
| #include <ATen/ops/_linalg_check_errors.h> |
| #include <ATen/ops/_linalg_check_errors_native.h> |
| #include <ATen/ops/_linalg_eigh.h> |
| #include <ATen/ops/_linalg_eigh_meta.h> |
| #include <ATen/ops/_linalg_eigh_native.h> |
| #include <ATen/ops/_linalg_solve_ex.h> |
| #include <ATen/ops/_linalg_solve_ex_meta.h> |
| #include <ATen/ops/_linalg_solve_ex_native.h> |
| #include <ATen/ops/_linalg_svd.h> |
| #include <ATen/ops/_linalg_svd_meta.h> |
| #include <ATen/ops/_linalg_svd_native.h> |
| #include <ATen/ops/_lu_with_info_native.h> |
| #include <ATen/ops/all.h> |
| #include <ATen/ops/arange.h> |
| #include <ATen/ops/cat.h> |
| #include <ATen/ops/cholesky.h> |
| #include <ATen/ops/cholesky_inverse.h> |
| #include <ATen/ops/cholesky_inverse_native.h> |
| #include <ATen/ops/cholesky_native.h> |
| #include <ATen/ops/cholesky_solve.h> |
| #include <ATen/ops/cholesky_solve_native.h> |
| #include <ATen/ops/clone.h> |
| #include <ATen/ops/complex.h> |
| #include <ATen/ops/cumprod.h> |
| #include <ATen/ops/empty.h> |
| #include <ATen/ops/empty_like.h> |
| #include <ATen/ops/geqrf.h> |
| #include <ATen/ops/geqrf_native.h> |
| #include <ATen/ops/inverse_native.h> |
| #include <ATen/ops/linalg_cholesky_ex.h> |
| #include <ATen/ops/linalg_cholesky_ex_meta.h> |
| #include <ATen/ops/linalg_cholesky_ex_native.h> |
| #include <ATen/ops/linalg_cholesky_native.h> |
| #include <ATen/ops/linalg_eig.h> |
| #include <ATen/ops/linalg_eig_native.h> |
| #include <ATen/ops/linalg_eigh_native.h> |
| #include <ATen/ops/linalg_eigvals.h> |
| #include <ATen/ops/linalg_eigvals_native.h> |
| #include <ATen/ops/linalg_eigvalsh_native.h> |
| #include <ATen/ops/linalg_householder_product.h> |
| #include <ATen/ops/linalg_householder_product_native.h> |
| #include <ATen/ops/linalg_inv.h> |
| #include <ATen/ops/linalg_inv_ex.h> |
| #include <ATen/ops/linalg_inv_ex_native.h> |
| #include <ATen/ops/linalg_inv_native.h> |
| #include <ATen/ops/linalg_ldl_factor_ex.h> |
| #include <ATen/ops/linalg_ldl_factor_ex_meta.h> |
| #include <ATen/ops/linalg_ldl_factor_ex_native.h> |
| #include <ATen/ops/linalg_ldl_factor_native.h> |
| #include <ATen/ops/linalg_ldl_solve_meta.h> |
| #include <ATen/ops/linalg_ldl_solve_native.h> |
| #include <ATen/ops/linalg_lstsq.h> |
| #include <ATen/ops/linalg_lstsq_native.h> |
| #include <ATen/ops/linalg_lu_factor_ex.h> |
| #include <ATen/ops/linalg_lu_factor_ex_meta.h> |
| #include <ATen/ops/linalg_lu_factor_ex_native.h> |
| #include <ATen/ops/linalg_lu_factor_native.h> |
| #include <ATen/ops/linalg_lu_meta.h> |
| #include <ATen/ops/linalg_lu_native.h> |
| #include <ATen/ops/linalg_lu_solve.h> |
| #include <ATen/ops/linalg_lu_solve_meta.h> |
| #include <ATen/ops/linalg_lu_solve_native.h> |
| #include <ATen/ops/linalg_qr.h> |
| #include <ATen/ops/linalg_qr_meta.h> |
| #include <ATen/ops/linalg_qr_native.h> |
| #include <ATen/ops/linalg_solve_ex.h> |
| #include <ATen/ops/linalg_solve_ex_native.h> |
| #include <ATen/ops/linalg_solve_native.h> |
| #include <ATen/ops/linalg_solve_triangular_native.h> |
| #include <ATen/ops/linalg_svd.h> |
| #include <ATen/ops/linalg_svd_native.h> |
| #include <ATen/ops/linalg_svdvals.h> |
| #include <ATen/ops/linalg_svdvals_native.h> |
| #include <ATen/ops/linalg_vander_native.h> |
| #include <ATen/ops/linalg_vecdot_native.h> |
| #include <ATen/ops/lu_solve_native.h> |
| #include <ATen/ops/lu_unpack.h> |
| #include <ATen/ops/lu_unpack_meta.h> |
| #include <ATen/ops/lu_unpack_native.h> |
| #include <ATen/ops/orgqr_native.h> |
| #include <ATen/ops/ormqr_native.h> |
| #include <ATen/ops/qr_native.h> |
| #include <ATen/ops/real.h> |
| #include <ATen/ops/resize_as_native.h> |
| #include <ATen/ops/sum.h> |
| #include <ATen/ops/svd_native.h> |
| #include <ATen/ops/triangular_solve_meta.h> |
| #include <ATen/ops/triangular_solve_native.h> |
| #include <ATen/ops/tril.h> |
| #include <ATen/ops/triu.h> |
| #include <ATen/ops/vdot.h> |
| #include <ATen/ops/zeros.h> |
| #endif |
| |
| // First the required LAPACK implementations are registered here. |
| // A comment above the registered LAPACK routine suggest which batched |
| // linear algebra function uses that routine |
| #if AT_BUILD_WITH_LAPACK() |
| |
| // getrf |
| extern "C" void zgetrf_(int *m, int *n, std::complex<double> *a, int *lda, int *ipiv, int *info); |
| extern "C" void cgetrf_(int *m, int *n, std::complex<float> *a, int *lda, int *ipiv, int *info); |
| extern "C" void dgetrf_(int *m, int *n, double *a, int *lda, int *ipiv, int *info); |
| extern "C" void sgetrf_(int *m, int *n, float *a, int *lda, int *ipiv, int *info); |
| |
| // potrs |
| extern "C" void zpotrs_(char *uplo, int *n, int *nrhs, std::complex<double> *a, int *lda, std::complex<double> *b, int *ldb, int *info); |
| extern "C" void cpotrs_(char *uplo, int *n, int *nrhs, std::complex<float> *a, int *lda, std::complex<float> *b, int *ldb, int *info); |
| extern "C" void dpotrs_(char *uplo, int *n, int *nrhs, double *a, int *lda, double *b, int *ldb, int *info); |
| extern "C" void spotrs_(char *uplo, int *n, int *nrhs, float *a, int *lda, float *b, int *ldb, int *info); |
| |
| // potrf |
| extern "C" void zpotrf_(char *uplo, int *n, std::complex<double> *a, int *lda, int *info); |
| extern "C" void cpotrf_(char *uplo, int *n, std::complex<float> *a, int *lda, int *info); |
| extern "C" void dpotrf_(char *uplo, int *n, double *a, int *lda, int *info); |
| extern "C" void spotrf_(char *uplo, int *n, float *a, int *lda, int *info); |
| |
| // potri |
| extern "C" void zpotri_(char *uplo, int *n, std::complex<double> *a, int *lda, int *info); |
| extern "C" void cpotri_(char *uplo, int *n, std::complex<float> *a, int *lda, int *info); |
| extern "C" void dpotri_(char *uplo, int *n, double *a, int *lda, int *info); |
| extern "C" void spotri_(char *uplo, int *n, float *a, int *lda, int *info); |
| |
| // sytrf |
| extern "C" void dsytrf_( |
| char* uplo, |
| int* n, |
| double* a, |
| int* lda, |
| int* ipiv, |
| double* work, |
| int* lwork, |
| int* info); |
| extern "C" void ssytrf_( |
| char* uplo, |
| int* n, |
| float* a, |
| int* lda, |
| int* ipiv, |
| float* work, |
| int* lwork, |
| int* info); |
| extern "C" void zsytrf_( |
| char* uplo, |
| int* n, |
| std::complex<double>* a, |
| int* lda, |
| int* ipiv, |
| std::complex<double>* work, |
| int* lwork, |
| int* info); |
| extern "C" void csytrf_( |
| char* uplo, |
| int* n, |
| std::complex<float>* a, |
| int* lda, |
| int* ipiv, |
| std::complex<float>* work, |
| int* lwork, |
| int* info); |
| |
| // hetrf |
| extern "C" void zhetrf_( |
| char* uplo, |
| int* n, |
| std::complex<double>* a, |
| int* lda, |
| int* ipiv, |
| std::complex<double>* work, |
| int* lwork, |
| int* info); |
| extern "C" void chetrf_( |
| char* uplo, |
| int* n, |
| std::complex<float>* a, |
| int* lda, |
| int* ipiv, |
| std::complex<float>* work, |
| int* lwork, |
| int* info); |
| |
| // sytrs |
| extern "C" void dsytrs_( |
| char* uplo, |
| int* n, |
| int* nrhs, |
| double* a, |
| int* lda, |
| int* ipiv, |
| double* b, |
| int* ldb, |
| int* info); |
| extern "C" void ssytrs_( |
| char* uplo, |
| int* n, |
| int* nrhs, |
| float* a, |
| int* lda, |
| int* ipiv, |
| float* b, |
| int* ldb, |
| int* info); |
| extern "C" void zsytrs_( |
| char* uplo, |
| int* n, |
| int* nrhs, |
| std::complex<double>* a, |
| int* lda, |
| int* ipiv, |
| std::complex<double>* b, |
| int* ldb, |
| int* info); |
| extern "C" void csytrs_( |
| char* uplo, |
| int* n, |
| int* nrhs, |
| std::complex<float>* a, |
| int* lda, |
| int* ipiv, |
| std::complex<float>* b, |
| int* ldb, |
| int* info); |
| |
| // hetrs |
| extern "C" void zhetrs_( |
| char* uplo, |
| int* n, |
| int* nrhs, |
| std::complex<double>* a, |
| int* lda, |
| int* ipiv, |
| std::complex<double>* b, |
| int* ldb, |
| int* info); |
| extern "C" void chetrs_( |
| char* uplo, |
| int* n, |
| int* nrhs, |
| std::complex<float>* a, |
| int* lda, |
| int* ipiv, |
| std::complex<float>* b, |
| int* ldb, |
| int* info); |
| |
| // geqrf |
| extern "C" void zgeqrf_(int *m, int *n, std::complex<double> *a, int *lda, std::complex<double> *tau, std::complex<double> *work, int *lwork, int *info); |
| extern "C" void cgeqrf_(int *m, int *n, std::complex<float> *a, int *lda, std::complex<float> *tau, std::complex<float> *work, int *lwork, int *info); |
| extern "C" void dgeqrf_(int *m, int *n, double *a, int *lda, double *tau, double *work, int *lwork, int *info); |
| extern "C" void sgeqrf_(int *m, int *n, float *a, int *lda, float *tau, float *work, int *lwork, int *info); |
| |
| // orgqr |
| extern "C" void zungqr_(int *m, int *n, int *k, std::complex<double> *a, int *lda, std::complex<double> *tau, std::complex<double> *work, int *lwork, int *info); |
| extern "C" void cungqr_(int *m, int *n, int *k, std::complex<float> *a, int *lda, std::complex<float> *tau, std::complex<float> *work, int *lwork, int *info); |
| extern "C" void dorgqr_(int *m, int *n, int *k, double *a, int *lda, double *tau, double *work, int *lwork, int *info); |
| extern "C" void sorgqr_(int *m, int *n, int *k, float *a, int *lda, float *tau, float *work, int *lwork, int *info); |
| |
| // ormqr |
| extern "C" void zunmqr_(char *side, char *trans, int *m, int *n, int *k, std::complex<double> *a, int *lda, std::complex<double> *tau, std::complex<double> *c, int *ldc, std::complex<double> *work, int *lwork, int *info); |
| extern "C" void cunmqr_(char *side, char *trans, int *m, int *n, int *k, std::complex<float> *a, int *lda, std::complex<float> *tau, std::complex<float> *c, int *ldc, std::complex<float> *work, int *lwork, int *info); |
| extern "C" void dormqr_(char *side, char *trans, int *m, int *n, int *k, double *a, int *lda, double *tau, double *c, int *ldc, double *work, int *lwork, int *info); |
| extern "C" void sormqr_(char *side, char *trans, int *m, int *n, int *k, float *a, int *lda, float *tau, float *c, int *ldc, float *work, int *lwork, int *info); |
| |
| // syevd |
| extern "C" void zheevd_(char *jobz, char *uplo, int *n, std::complex<double> *a, int *lda, double *w, std::complex<double> *work, int *lwork, double *rwork, int *lrwork, int *iwork, int *liwork, int *info); |
| extern "C" void cheevd_(char *jobz, char *uplo, int *n, std::complex<float> *a, int *lda, float *w, std::complex<float> *work, int *lwork, float *rwork, int *lrwork, int *iwork, int *liwork, int *info); |
| extern "C" void dsyevd_(char *jobz, char *uplo, int *n, double *a, int *lda, double *w, double *work, int *lwork, int *iwork, int *liwork, int *info); |
| extern "C" void ssyevd_(char *jobz, char *uplo, int *n, float *a, int *lda, float *w, float *work, int *lwork, int *iwork, int *liwork, int *info); |
| |
| // geev |
| extern "C" void dgeev_(char *jobvl, char *jobvr, int *n, double *a, int *lda, double *wr, double *wi, double* vl, int *ldvl, double *vr, int *ldvr, double *work, int *lwork, int *info); |
| extern "C" void sgeev_(char *jobvl, char *jobvr, int *n, float *a, int *lda, float *wr, float *wi, float* vl, int *ldvl, float *vr, int *ldvr, float *work, int *lwork, int *info); |
| extern "C" void cgeev_(char *jobvl, char *jobvr, int *n, |
| std::complex<float> *a, int *lda, |
| std::complex<float> *w, |
| std::complex<float> *vl, int *ldvl, |
| std::complex<float> *vr, int *ldvr, |
| std::complex<float> *work, int *lwork, |
| float *rwork, |
| int *info); |
| extern "C" void zgeev_(char *jobvl, char *jobvr, int *n, |
| std::complex<double> *a, int *lda, |
| std::complex<double> *w, |
| std::complex<double> *vl, int *ldvl, |
| std::complex<double> *vr, int *ldvr, |
| std::complex<double> *work, int *lwork, |
| double *rwork, |
| int *info); |
| |
| // gesdd |
| extern "C" void zgesdd_(char *jobz, int *m, int *n, std::complex<double> *a, int *lda, |
| double *s, std::complex<double> *u, int *ldu, std::complex<double> *vt, int *ldvt, std::complex<double> *work, int *lwork, double *rwork, int *iwork, int *info); |
| extern "C" void cgesdd_(char *jobz, int *m, int *n, std::complex<float> *a, int *lda, |
| float *s, std::complex<float> *u, int *ldu, std::complex<float> *vt, int *ldvt, std::complex<float> *work, int *lwork, float *rwork, int *iwork, int *info); |
| extern "C" void dgesdd_(char *jobz, int *m, int *n, double *a, int *lda, |
| double *s, double *u, int *ldu, double *vt, int *ldvt, double *work, int *lwork, int *iwork, int *info); |
| extern "C" void sgesdd_(char *jobz, int *m, int *n, float *a, int *lda, |
| float *s, float *u, int *ldu, float *vt, int *ldvt, float *work, int *lwork, int *iwork, int *info); |
| |
| // getrs |
| extern "C" void zgetrs_(char *trans, int *n, int *nrhs, std::complex<double> *a, int *lda, int *ipiv, std::complex<double> *b, int *ldb, int *info); |
| extern "C" void cgetrs_(char *trans, int *n, int *nrhs, std::complex<float> *a, int *lda, int *ipiv, std::complex<float> *b, int *ldb, int *info); |
| extern "C" void dgetrs_(char *trans, int *n, int *nrhs, double *a, int *lda, int *ipiv, double *b, int *ldb, int *info); |
| extern "C" void sgetrs_(char *trans, int *n, int *nrhs, float *a, int *lda, int *ipiv, float *b, int *ldb, int *info); |
| |
| // gels |
| extern "C" void zgels_(char *trans, int *m, int *n, int *nrhs, |
| std::complex<double> *a, int *lda, std::complex<double> *b, int *ldb, |
| std::complex<double> *work, int *lwork, int *info); |
| extern "C" void cgels_(char *trans, int *m, int *n, int *nrhs, |
| std::complex<float> *a, int *lda, std::complex<float> *b, int *ldb, |
| std::complex<float> *work, int *lwork, int *info); |
| extern "C" void dgels_(char *trans, int *m, int *n, int *nrhs, |
| double *a, int *lda, double *b, int *ldb, |
| double *work, int *lwork, int *info); |
| extern "C" void sgels_(char *trans, int *m, int *n, int *nrhs, |
| float *a, int *lda, float *b, int *ldb, |
| float *work, int *lwork, int *info); |
| |
| // gelsd |
| extern "C" void zgelsd_(int *m, int *n, int *nrhs, |
| std::complex<double> *a, int *lda, std::complex<double> *b, int *ldb, |
| double *s, double *rcond, int *rank, |
| std::complex<double> *work, int *lwork, double *rwork, int *iwork, int *info); |
| extern "C" void cgelsd_(int *m, int *n, int *nrhs, |
| std::complex<float> *a, int *lda, std::complex<float> *b, int *ldb, |
| float *s, float *rcond, int *rank, |
| std::complex<float> *work, int *lwork, float *rwork, int *iwork, int *info); |
| extern "C" void dgelsd_(int *m, int *n, int *nrhs, |
| double *a, int *lda, double *b, int *ldb, |
| double *s, double *rcond, int *rank, |
| double *work, int *lwork, int *iwork, int *info); |
| extern "C" void sgelsd_(int *m, int *n, int *nrhs, |
| float *a, int *lda, float *b, int *ldb, |
| float *s, float *rcond, int *rank, |
| float *work, int *lwork, int *iwork, int *info); |
| |
| // gelsy |
| extern "C" void zgelsy_(int *m, int *n, int *nrhs, |
| std::complex<double> *a, int *lda, std::complex<double> *b, int *ldb, |
| int *jpvt, double *rcond, int *rank, |
| std::complex<double> *work, int *lwork, |
| double *rwork, int *info); |
| extern "C" void cgelsy_(int *m, int *n, int *nrhs, |
| std::complex<float> * a, int *lda, std::complex<float> *b, int *ldb, |
| int *jpvt, float *rcond, int *rank, |
| std::complex<float> *work, int *lwork, |
| float *rwork, int *info); |
| extern "C" void dgelsy_(int *m, int *n, int *nrhs, |
| double *a, int *lda, double *b, int *ldb, |
| int *jpvt, double *rcond, int *rank, |
| double *work, int *lwork, int *info); |
| extern "C" void sgelsy_(int *m, int *n, int *nrhs, |
| float *a, int *lda, float *b, int *ldb, |
| int *jpvt, float *rcond, int *rank, |
| float *work, int *lwork, int *info); |
| |
| // gelss |
| extern "C" void zgelss_(int *m, int *n, int *nrhs, |
| std::complex<double> *a, int *lda, std::complex<double> *b, int *ldb, |
| double *s, double *rcond, int *rank, |
| std::complex<double> *work, int *lwork, |
| double *rwork, int *info); |
| extern "C" void cgelss_(int *m, int *n, int *nrhs, |
| std::complex<float> *a, int *lda, std::complex<float> *b, int *ldb, |
| float *s, float *rcond, int *rank, |
| std::complex<float> *work, int *lwork, |
| float *rwork, int *info); |
| extern "C" void dgelss_(int *m, int *n, int *nrhs, |
| double *a, int *lda, double *b, int *ldb, |
| double *s, double *rcond, int *rank, |
| double *work, int *lwork, int *info); |
| extern "C" void sgelss_(int *m, int *n, int *nrhs, |
| float *a, int *lda, float *b, int *ldb, |
| float *s, float *rcond, int *rank, |
| float *work, int *lwork, int *info); |
| #endif |
| |
| #if AT_BUILD_WITH_BLAS() |
| // trsm |
| extern "C" void ztrsm_(char *side, char *uplo, char *trans, char *diag, int *n, int *nrhs, std::complex<double> *alpha, std::complex<double> *a, int *lda, std::complex<double> *b, int *ldb); |
| extern "C" void ctrsm_(char *side, char *uplo, char *trans, char *diag, int *n, int *nrhs, std::complex<float> *alpha, std::complex<float> *a, int *lda, std::complex<float> *b, int *ldb); |
| extern "C" void dtrsm_(char *side, char *uplo, char *trans, char *diag, int *n, int *nrhs, double *alpha, double *a, int *lda, double *b, int *ldb); |
| extern "C" void strsm_(char *side, char *uplo, char *trans, char *diag, int *n, int *nrhs, float *alpha, float *a, int *lda, float *b, int *ldb); |
| #endif |
| |
| namespace at { |
| namespace meta { |
| |
| TORCH_META_FUNC(linalg_ldl_factor_ex) |
| (const Tensor& self, bool hermitian, bool check_errors) { |
| at::native::squareCheckInputs(self, "torch.linalg.ldl_factor_ex"); |
| at::native::checkFloatingOrComplex(self, "torch.linalg.ldl_factor_ex"); |
| |
| auto shape = self.sizes(); |
| auto ndim = shape.size(); |
| |
| // prefer column major strides |
| auto ld_strides = at::native::batched_matrix_contiguous_strides(shape, /*f-contig=*/true); |
| set_output_strided(0, shape, ld_strides, self.options(), {}); // LD |
| |
| set_output_contiguous( |
| 1, shape.slice(0, ndim - 1), self.options().dtype(ScalarType::Int)); // pivots |
| |
| set_output_contiguous( |
| 2, shape.slice(0, ndim - 2), self.options().dtype(ScalarType::Int)); // info |
| } |
| |
| TORCH_META_FUNC(linalg_ldl_solve) |
| (const Tensor& LD, |
| const Tensor& pivots, |
| const Tensor& B, |
| bool hermitian) { |
| at::native::squareCheckInputs(LD, "torch.linalg.ldl_solve"); |
| at::native::checkFloatingOrComplex(LD, "torch.linalg.ldl_solve"); |
| at::native::linearSolveCheckInputs(B, LD, "torch.linalg.ldl_solve"); |
| TORCH_CHECK( |
| B.dim() >= 2, |
| "torch.linalg.ldl_solve: Expected B to have at least 2 dimensions, but it has ", |
| B.dim(), |
| " dimensions instead"); |
| auto expected_pivots_shape = LD.sizes().slice(0, LD.dim() - 1); |
| TORCH_CHECK( |
| expected_pivots_shape.equals(pivots.sizes()), |
| "torch.linalg.ldl_solve: Expected LD.shape[:-1] and pivots.shape to be the same, but got pivots with shape ", |
| pivots.sizes(), |
| " instead"); |
| // pivots is allowed to be any integer type |
| // LAPACK we use is 32-bit interface while cuSOLVER uses 64-bit interface for integers |
| TORCH_CHECK( |
| at::isIntegralType(pivots.scalar_type(), /*includeBool=*/false), |
| "torch.linalg.ldl_solve: Expected pivots to be integers. Got ", |
| pivots.scalar_type()); |
| TORCH_CHECK( |
| LD.scalar_type() == B.scalar_type(), |
| "torch.linalg.ldl_solve: ", |
| "LD dtype", |
| LD.scalar_type(), |
| " does not match b dtype ", |
| B.scalar_type()); |
| |
| std::vector<int64_t> B_broadcast_size; |
| std::tie(B_broadcast_size, std::ignore) = at::native::_linalg_broadcast_batch_dims(B, LD); |
| |
| // prefer column major strides |
| auto result_strides = at::native::batched_matrix_contiguous_strides(B_broadcast_size, /*column_major=*/true); |
| set_output_strided(0, B_broadcast_size, result_strides, B.options(), {}); |
| } |
| |
| TORCH_META_FUNC(triangular_solve)(const Tensor& self, const Tensor& A, bool upper, bool transpose, bool unitriangular) { |
| TORCH_CHECK(self.dim() >= 2, |
| "torch.triangular_solve: Expected b to have at least 2 dimensions, but it has ", self.dim(), " dimensions instead"); |
| TORCH_CHECK(A.dim() >= 2, |
| "torch.triangular_solve: Expected A to have at least 2 dimensions, but it has ", A.dim(), " dimensions instead"); |
| |
| at::native::linearSolveCheckInputs(self, A, "triangular_solve"); |
| |
| if (A.layout() == Layout::Strided) { |
| std::vector<int64_t> self_broadcast_size, A_broadcast_size; |
| std::tie(self_broadcast_size, A_broadcast_size) = at::native::_linalg_broadcast_batch_dims(self, A); |
| |
| // make column major strides for BLAS |
| const auto solution_strides = at::native::batched_matrix_contiguous_strides(self_broadcast_size, /*f-contig=*/true); |
| set_output_raw_strided(0, self_broadcast_size, solution_strides, self.options(), {}); |
| |
| // make column major strides for BLAS |
| auto clone_A_strides = at::native::batched_matrix_contiguous_strides(A_broadcast_size, /*f_contig=*/true); |
| set_output_raw_strided(1, A_broadcast_size, clone_A_strides, A.options(), {}); |
| } else if (A.layout() == Layout::SparseCsr || A.layout() == Layout::SparseBsr) { |
| // no broadcasting for non-strided layout |
| set_output_raw_strided(0, self.sizes(), {}, self.options(), {}); // make row major strides for Sparse BLAS |
| set_output_raw_strided(1, {0}, {}, self.options(), {}); // return 0-sized tensor |
| } else { |
| TORCH_INTERNAL_ASSERT(false, "triangular_solve: Got an unexpected layout."); |
| } |
| } |
| |
| TORCH_META_FUNC(_linalg_solve_ex)(const Tensor& A, |
| const Tensor& B, |
| bool left, |
| bool check_errors) { |
| // dtype |
| at::native::checkFloatingOrComplex(A, "linalg.solve"); |
| TORCH_CHECK(A.scalar_type() == B.scalar_type(), |
| "linalg.solve: Expected A and B to have the same dtype, but found A of type ", |
| A.scalar_type(), " and B of type ", B.scalar_type(), " instead"); |
| |
| // NumPy compat: Two types of 'B' tensors are supported: |
| // - 1D tensor or batch of 1D tensors (vector case) |
| // - 2D tensor or batch of 2D tensors (matrix case) |
| const bool vector_case = at::native::linalg_solve_is_vector_rhs(A, B); |
| auto B_ = vector_case ? B.unsqueeze(-1) : B; |
| |
| // matrix shapes |
| at::native::checkInputsSolver(A, B_, /*left=*/left, "linalg.solve"); |
| |
| // Check that B can be broadcasted to the shape of A |
| auto B_broad_shape = std::get<0>(at::native::_linalg_broadcast_batch_dims(B_, A)); |
| // We disallow the broadcasting of B as a vector when left=False as, in that case, A.shape = (*, 1, 1) |
| TORCH_CHECK(left || !vector_case, "linalg.solve: Vector broadcasting of the left hand side is not supported for left=False. In this case linalg.solve is equivalent to B / A.squeeze(-1)"); |
| auto result_shape = vector_case ? IntArrayRef(B_broad_shape.data(), B_broad_shape.size() - 1) |
| : B_broad_shape; |
| auto result_strides = at::native::batched_matrix_contiguous_strides(result_shape, /*column_major=*/left); |
| |
| set_output_strided(0, result_shape, result_strides, B.options(), {}); |
| |
| auto shape = A.sizes(); |
| auto ndim = shape.size(); |
| |
| // LU |
| auto LU_strides = at::native::batched_matrix_contiguous_strides(shape, /*f-contig*=*/true); |
| set_output_strided(1, shape, LU_strides, A.options(), {}); |
| |
| // pivots |
| set_output_contiguous(2, shape.slice(0, ndim - 1), A.options().dtype(kInt)); |
| |
| // info |
| set_output_contiguous(3, shape.slice(0, ndim - 2), A.options().dtype(kInt)); |
| } |
| |
| TORCH_META_FUNC(linalg_inv_ex)(const Tensor& A, bool check_errors) { |
| at::native::squareCheckInputs(A, "linalg.inv"); |
| at::native::checkFloatingOrComplex(A, "linalg.inv", /*allow_low_precision_dtypes*/false); |
| |
| auto shape = A.sizes(); |
| |
| auto result_strides = at::native::batched_matrix_contiguous_strides(shape, /*f-contig*=*/true); |
| set_output_strided(0, shape, result_strides, A.options(), {}); |
| set_output_contiguous( |
| 1, shape.slice(0, shape.size() - 2), A.options().dtype(ScalarType::Int)); // info |
| } |
| |
| TORCH_META_FUNC(linalg_lu_factor_ex)(const Tensor& A, bool pivot, bool check_errors) { |
| TORCH_CHECK(A.dim() >= 2, "torch.lu_factor: Expected tensor with 2 or more dimensions. Got size: ", A.sizes(), " instead"); |
| |
| auto sizes = A.sizes().vec(); |
| const auto m = sizes.cend()[-2]; |
| const auto n = sizes.cend()[-1]; |
| |
| // make column major strides for BLAS |
| auto LU_strides = at::native::batched_matrix_contiguous_strides(sizes, /*f-contig*=*/true); |
| set_output_strided(0, sizes, LU_strides, A.options(), {}); |
| |
| // Set sizes to the size of pivots |
| sizes.pop_back(); |
| sizes.back() = std::min(m, n); |
| set_output_contiguous(1, sizes, A.options().dtype(kInt), {}); |
| |
| // Set sizes to the size of info |
| sizes.pop_back(); |
| set_output_contiguous(2, sizes, A.options().dtype(kInt), {}); |
| } |
| |
| TORCH_META_FUNC(linalg_lu_solve)(const Tensor& LU, |
| const Tensor& pivots, |
| const Tensor& B, |
| bool left, |
| bool adjoint) { |
| // dtype |
| at::native::checkFloatingOrComplex(LU, "torch.linalg.lu_solve"); |
| TORCH_CHECK(LU.scalar_type() == B.scalar_type(), |
| "linalg.lu_solve: Expected LU and B to have the same dtype, but found LU of type ", |
| LU.scalar_type(), " and B of type ", B.scalar_type(), " instead"); |
| TORCH_CHECK(pivots.dtype() == at::kInt, |
| "linalg.lu_solve: pivots should be a Tensor of scalar type torch.int32"); |
| |
| // matrix shapes |
| at::native::squareCheckInputs(LU, "torch.linalg.lu_solve"); |
| at::native::checkInputsSolver(LU, B, left, "linalg.lu_solve"); |
| // |
| TORCH_CHECK(LU.size(-1) == pivots.size(-1), |
| "linalg.lu_solve: Number of pivots per batch should be same as the dimension of the matrix"); |
| |
| // batches |
| TORCH_CHECK( |
| LU.sizes().slice(0, LU.dim() - 1).equals(pivots.sizes()), |
| "linalg.lu_solve: Expected LU.shape[:-1] and pivots.shape to be the same, but got pivots with shape ", |
| pivots.sizes(), " instead"); |
| |
| // This one checks that B can be broadcasted to the shape of A |
| auto B_broadcast_size = std::get<0>(at::native::_linalg_broadcast_batch_dims(B, LU)); |
| auto result_strides = at::native::batched_matrix_contiguous_strides(B_broadcast_size, /*column_major=*/left); |
| |
| set_output_strided(0, B_broadcast_size, result_strides, B.options(), {}); |
| } |
| |
| TORCH_META_FUNC(linalg_cholesky_ex)(const Tensor& A, |
| bool upper, |
| bool check_errors) { |
| at::native::squareCheckInputs(A, "linalg.cholesky"); |
| at::native::checkFloatingOrComplex(A, "linalg.cholesky"); |
| |
| auto A_shape = A.sizes(); |
| auto ndim = A_shape.size(); |
| |
| // L |
| auto L_strides = at::native::batched_matrix_contiguous_strides(A_shape, /*f-contig*=*/true); |
| set_output_strided(0, A_shape, L_strides, A.options(), {}); |
| |
| // info |
| set_output_contiguous(1, A_shape.slice(0, ndim - 2), A.options().dtype(ScalarType::Int)); |
| } |
| |
| TORCH_META_FUNC(linalg_qr)(const Tensor& A, |
| c10::string_view mode) { |
| at::native::checkIsMatrix(A, "linalg.qr"); |
| at::native::checkFloatingOrComplex(A, "linalg.qr"); |
| bool compute_q, reduced_mode; |
| std::tie(compute_q, reduced_mode) = at::native::_parse_qr_mode(mode); |
| |
| auto A_shape = A.sizes().vec(); |
| const auto m = A_shape.cend()[-2]; |
| const auto n = A_shape.cend()[-1]; |
| const auto k = std::min(m, n); |
| |
| if (compute_q) { |
| auto Q_shape = A_shape; |
| Q_shape.end()[-1] = reduced_mode ? k : m; |
| auto Q_strides = at::native::batched_matrix_contiguous_strides(Q_shape, /*f-contig*=*/true); |
| set_output_strided(0, Q_shape, Q_strides, A.options(), {}); |
| } else { |
| set_output_raw_strided(0, {0}, {}, A.options(), {}); |
| } |
| |
| // For readability |
| auto R_shape = std::move(A_shape); |
| R_shape.end()[-2] = (reduced_mode || !compute_q) ? k : m; |
| auto R_strides = at::native::batched_matrix_contiguous_strides(R_shape, /*f-contig*=*/true); |
| set_output_strided(1, R_shape, R_strides, A.options(), {}); |
| } |
| |
| |
| TORCH_META_FUNC(_linalg_svd)(const Tensor& A, |
| bool full_matrices, |
| bool compute_uv, |
| c10::optional<c10::string_view> driver) { |
| at::native::checkIsMatrix(A, "linalg.svd"); |
| at::native::checkFloatingOrComplex(A, "linalg.svd"); |
| |
| auto sizes = A.sizes().vec(); |
| const auto m = sizes.cend()[-2]; |
| const auto n = sizes.cend()[-1]; |
| const auto k = std::min(m, n); |
| |
| // Prepare sizes for U |
| if (compute_uv) { |
| sizes.back() = full_matrices ? m : k; |
| auto U_strides = at::native::batched_matrix_contiguous_strides(sizes, /*f-contig*=*/true); |
| set_output_strided(0, sizes, U_strides, A.options(), {}); |
| |
| // Prepare sizes for Vh |
| sizes.end()[-2] = full_matrices ? n : k; |
| sizes.end()[-1] = n; |
| |
| // We need to distinguish the cuSOLVER case, as the cuSOLVER algorithms we use |
| // expect F-contig matrices, but they compute V rather than Vh |
| const bool use_cusolver = at::native::svd_uses_cusolver(A); |
| auto Vh_strides = at::native::batched_matrix_contiguous_strides(sizes, /*f-contig*=*/!use_cusolver); |
| set_output_strided(2, sizes, Vh_strides, A.options(), {}); |
| } else { |
| set_output_raw_strided(0, {0}, {}, A.options(), {}); |
| set_output_raw_strided(2, {0}, {}, A.options(), {}); |
| } |
| |
| // Prepare sizes for S. S is always real, even when A is complex. |
| sizes.pop_back(); |
| sizes.end()[-1] = k; |
| set_output_contiguous(1, sizes, A.options().dtype(c10::toRealValueType(A.scalar_type())), {}); |
| } |
| |
| TORCH_META_FUNC(lu_unpack)(const Tensor& LU, const Tensor& pivots, bool unpack_data, bool unpack_pivots) { |
| TORCH_CHECK(LU.dim() >= 2, "torch.lu_unpack: Expected tensor with 2 or more dimensions. Got size: ", LU.sizes(), " instead"); |
| if (unpack_pivots) { |
| TORCH_CHECK(pivots.scalar_type() == at::kInt, |
| "torch.lu_unpack: LU_pivots is expected to be a contiguous tensor of torch.int32 dtype.\n" |
| "Note: this function is intended to be used with the output produced by torch.linalg.lu_factor"); |
| } |
| |
| auto sizes = LU.sizes().vec(); |
| const auto m = sizes.cend()[-2]; |
| const auto n = sizes.cend()[-1]; |
| const auto k = std::min(m, n); |
| |
| // P.shape[-2:] == (m, m) (or size zero if pivot == False) |
| sizes.end()[-1] = m; |
| if (unpack_pivots) { |
| set_output_raw_strided(0, sizes, {}, LU.options(), {}); |
| } else { |
| set_output_raw_strided(0, {0}, {}, LU.options(), {}); |
| } |
| |
| if (unpack_data) { |
| // L.shape[-2:] == (m, k) |
| sizes.end()[-1] = k; |
| set_output_raw_strided(1, sizes, {}, LU.options(), {}); |
| |
| // U.shape[-2:] == (k, n) |
| sizes.end()[-2] = k; |
| sizes.end()[-1] = n; |
| set_output_raw_strided(2, sizes, {}, LU.options(), {}); |
| } else { |
| set_output_raw_strided(1, {0}, {}, LU.options(), {}); |
| set_output_raw_strided(2, {0}, {}, LU.options(), {}); |
| } |
| } |
| |
| TORCH_META_FUNC(_linalg_eigh)(const Tensor& A, |
| c10::string_view uplo, |
| bool compute_v) { |
| at::native::squareCheckInputs(A, "linalg.eigh"); |
| at::native::checkUplo(uplo); |
| |
| auto shape = A.sizes().vec(); |
| if (compute_v) { |
| // eigenvectors |
| auto V_strides = at::native::batched_matrix_contiguous_strides(shape, /*f-contig*=*/true); |
| set_output_strided(1, shape, V_strides, A.options(), {}); |
| } else { |
| set_output_raw_strided(1, {0}, {}, A.options(), {}); |
| } |
| |
| // eigenvalues |
| shape.pop_back(); |
| set_output_contiguous(0, shape, A.options().dtype(c10::toRealValueType(A.scalar_type())), {}); |
| } |
| |
| TORCH_META_FUNC(linalg_lu)(const Tensor& A, bool pivot) { |
| TORCH_CHECK(A.dim() >= 2, "linalg.lu: Expected tensor with 2 or more dimensions. Got size: ", A.sizes(), " instead"); |
| |
| auto sizes = A.sizes().vec(); |
| const auto m = sizes.cend()[-2]; |
| const auto n = sizes.cend()[-1]; |
| const auto k = std::min(m, n); |
| |
| // P.shape[-2:] == (m, m) (or size zero if pivot == False) |
| sizes.end()[-1] = m; |
| if (pivot) { |
| set_output_raw_strided(0, sizes, {}, A.options(), {}); |
| } else { |
| set_output_raw_strided(0, {0}, {}, A.options(), {}); |
| } |
| |
| // L.shape[-2:] == (m, k) |
| sizes.end()[-1] = k; |
| set_output_raw_strided(1, sizes, {}, A.options(), {}); |
| |
| // U.shape[-2:] == (k, n) |
| sizes.end()[-2] = k; |
| sizes.end()[-1] = n; |
| set_output_raw_strided(2, sizes, {}, A.options(), {}); |
| } |
| |
| } // namespace meta |
| |
| namespace native { |
| |
| #if AT_BUILD_WITH_LAPACK() |
| // Define the per-batch functions to be used in the main implementation of the batched |
| // linear algebra operations |
| |
| template<class scalar_t> |
| void lapackCholeskySolve(char uplo, int n, int nrhs, scalar_t *a, int lda, scalar_t *b, int ldb, int *info); |
| |
| template<class scalar_t, class value_t=scalar_t> |
| void lapackSymeig(char jobz, char uplo, int n, scalar_t *a, int lda, value_t *w, scalar_t *work, int lwork, value_t *rwork, int *info); |
| |
| template<> void lapackLu<c10::complex<double>>(int m, int n, c10::complex<double> *a, int lda, int *ipiv, int *info) { |
| zgetrf_(&m, &n, reinterpret_cast<std::complex<double>*>(a), &lda, ipiv, info); |
| } |
| |
| template<> void lapackLu<c10::complex<float>>(int m, int n, c10::complex<float> *a, int lda, int *ipiv, int *info) { |
| cgetrf_(&m, &n, reinterpret_cast<std::complex<float>*>(a), &lda, ipiv, info); |
| } |
| |
| template<> void lapackLu<double>(int m, int n, double *a, int lda, int *ipiv, int *info) { |
| dgetrf_(&m, &n, a, &lda, ipiv, info); |
| } |
| |
| template<> void lapackLu<float>(int m, int n, float *a, int lda, int *ipiv, int *info) { |
| sgetrf_(&m, &n, a, &lda, ipiv, info); |
| } |
| |
| template<> void lapackCholeskySolve<c10::complex<double>>(char uplo, int n, int nrhs, c10::complex<double> *a, int lda, c10::complex<double> *b, int ldb, int *info) { |
| zpotrs_(&uplo, &n, &nrhs, reinterpret_cast<std::complex<double>*>(a), &lda, reinterpret_cast<std::complex<double>*>(b), &ldb, info); |
| } |
| |
| template<> void lapackCholeskySolve<c10::complex<float>>(char uplo, int n, int nrhs, c10::complex<float> *a, int lda, c10::complex<float> *b, int ldb, int *info) { |
| cpotrs_(&uplo, &n, &nrhs, reinterpret_cast<std::complex<float>*>(a), &lda, reinterpret_cast<std::complex<float>*>(b), &ldb, info); |
| } |
| |
| template<> void lapackCholeskySolve<double>(char uplo, int n, int nrhs, double *a, int lda, double *b, int ldb, int *info) { |
| dpotrs_(&uplo, &n, &nrhs, a, &lda, b, &ldb, info); |
| } |
| |
| template<> void lapackCholeskySolve<float>(char uplo, int n, int nrhs, float *a, int lda, float *b, int ldb, int *info) { |
| spotrs_(&uplo, &n, &nrhs, a, &lda, b, &ldb, info); |
| } |
| |
| template<> void lapackCholesky<c10::complex<double>>(char uplo, int n, c10::complex<double> *a, int lda, int *info) { |
| zpotrf_(&uplo, &n, reinterpret_cast<std::complex<double>*>(a), &lda, info); |
| } |
| |
| template<> void lapackCholesky<c10::complex<float>>(char uplo, int n, c10::complex<float> *a, int lda, int *info) { |
| cpotrf_(&uplo, &n, reinterpret_cast<std::complex<float>*>(a), &lda, info); |
| } |
| |
| template<> void lapackCholesky<double>(char uplo, int n, double *a, int lda, int *info) { |
| dpotrf_(&uplo, &n, a, &lda, info); |
| } |
| |
| template<> void lapackCholesky<float>(char uplo, int n, float *a, int lda, int *info) { |
| spotrf_(&uplo, &n, a, &lda, info); |
| } |
| |
| template<> void lapackCholeskyInverse<c10::complex<double>>(char uplo, int n, c10::complex<double> *a, int lda, int *info) { |
| zpotri_(&uplo, &n, reinterpret_cast<std::complex<double>*>(a), &lda, info); |
| } |
| |
| template<> void lapackCholeskyInverse<c10::complex<float>>(char uplo, int n, c10::complex<float> *a, int lda, int *info) { |
| cpotri_(&uplo, &n, reinterpret_cast<std::complex<float>*>(a), &lda, info); |
| } |
| |
| template<> void lapackCholeskyInverse<double>(char uplo, int n, double *a, int lda, int *info) { |
| dpotri_(&uplo, &n, a, &lda, info); |
| } |
| |
| template<> void lapackCholeskyInverse<float>(char uplo, int n, float *a, int lda, int *info) { |
| spotri_(&uplo, &n, a, &lda, info); |
| } |
| |
| template<> void lapackGeqrf<c10::complex<double>>(int m, int n, c10::complex<double> *a, int lda, c10::complex<double> *tau, c10::complex<double> *work, int lwork, int *info) { |
| zgeqrf_(&m, &n, reinterpret_cast<std::complex<double>*>(a), &lda, reinterpret_cast<std::complex<double>*>(tau), reinterpret_cast<std::complex<double>*>(work), &lwork, info); |
| } |
| |
| template<> void lapackGeqrf<c10::complex<float>>(int m, int n, c10::complex<float> *a, int lda, c10::complex<float> *tau, c10::complex<float> *work, int lwork, int *info) { |
| cgeqrf_(&m, &n, reinterpret_cast<std::complex<float>*>(a), &lda, reinterpret_cast<std::complex<float>*>(tau), reinterpret_cast<std::complex<float>*>(work), &lwork, info); |
| } |
| |
| template<> void lapackGeqrf<double>(int m, int n, double *a, int lda, double *tau, double *work, int lwork, int *info) { |
| dgeqrf_(&m, &n, a, &lda, tau, work, &lwork, info); |
| } |
| |
| template<> void lapackGeqrf<float>(int m, int n, float *a, int lda, float *tau, float *work, int lwork, int *info) { |
| sgeqrf_(&m, &n, a, &lda, tau, work, &lwork, info); |
| } |
| |
| template<> void lapackOrgqr<c10::complex<double>>(int m, int n, int k, c10::complex<double> *a, int lda, c10::complex<double> *tau, c10::complex<double> *work, int lwork, int *info) { |
| zungqr_(&m, &n, &k, reinterpret_cast<std::complex<double>*>(a), &lda, reinterpret_cast<std::complex<double>*>(tau), reinterpret_cast<std::complex<double>*>(work), &lwork, info); |
| } |
| |
| template<> void lapackOrgqr<c10::complex<float>>(int m, int n, int k, c10::complex<float> *a, int lda, c10::complex<float> *tau, c10::complex<float> *work, int lwork, int *info) { |
| cungqr_(&m, &n, &k, reinterpret_cast<std::complex<float>*>(a), &lda, reinterpret_cast<std::complex<float>*>(tau), reinterpret_cast<std::complex<float>*>(work), &lwork, info); |
| } |
| |
| template<> void lapackOrgqr<double>(int m, int n, int k, double *a, int lda, double *tau, double *work, int lwork, int *info) { |
| dorgqr_(&m, &n, &k, a, &lda, tau, work, &lwork, info); |
| } |
| |
| template<> void lapackOrgqr<float>(int m, int n, int k, float *a, int lda, float *tau, float *work, int lwork, int *info) { |
| sorgqr_(&m, &n, &k, a, &lda, tau, work, &lwork, info); |
| } |
| |
| template<> void lapackOrmqr<c10::complex<double>>(char side, char trans, int m, int n, int k, c10::complex<double> *a, int lda, c10::complex<double> *tau, c10::complex<double> *c, int ldc, c10::complex<double> *work, int lwork, int *info) { |
| zunmqr_(&side, &trans, &m, &n, &k, reinterpret_cast<std::complex<double>*>(a), &lda, reinterpret_cast<std::complex<double>*>(tau), reinterpret_cast<std::complex<double>*>(c), &ldc, reinterpret_cast<std::complex<double>*>(work), &lwork, info); |
| } |
| |
| template<> void lapackOrmqr<c10::complex<float>>(char side, char trans, int m, int n, int k, c10::complex<float> *a, int lda, c10::complex<float> *tau, c10::complex<float> *c, int ldc, c10::complex<float> *work, int lwork, int *info) { |
| cunmqr_(&side, &trans, &m, &n, &k, reinterpret_cast<std::complex<float>*>(a), &lda, reinterpret_cast<std::complex<float>*>(tau), reinterpret_cast<std::complex<float>*>(c), &ldc, reinterpret_cast<std::complex<float>*>(work), &lwork, info); |
| } |
| |
| template<> void lapackOrmqr<double>(char side, char trans, int m, int n, int k, double *a, int lda, double *tau, double *c, int ldc, double *work, int lwork, int *info) { |
| dormqr_(&side, &trans, &m, &n, &k, a, &lda, tau, c, &ldc, work, &lwork, info); |
| } |
| |
| template<> void lapackOrmqr<float>(char side, char trans, int m, int n, int k, float *a, int lda, float *tau, float *c, int ldc, float *work, int lwork, int *info) { |
| sormqr_(&side, &trans, &m, &n, &k, a, &lda, tau, c, &ldc, work, &lwork, info); |
| } |
| |
| template<> void lapackSyevd<c10::complex<double>, double>(char jobz, char uplo, int n, c10::complex<double> *a, int lda, double *w, c10::complex<double> *work, int lwork, double *rwork, int lrwork, int *iwork, int liwork, int *info) { |
| zheevd_(&jobz, &uplo, &n, reinterpret_cast<std::complex<double>*>(a), &lda, w, reinterpret_cast<std::complex<double>*>(work), &lwork, rwork, &lrwork, iwork, &liwork, info); |
| } |
| |
| template<> void lapackSyevd<c10::complex<float>, float>(char jobz, char uplo, int n, c10::complex<float> *a, int lda, float *w, c10::complex<float> *work, int lwork, float *rwork, int lrwork, int *iwork, int liwork, int *info) { |
| cheevd_(&jobz, &uplo, &n, reinterpret_cast<std::complex<float>*>(a), &lda, w, reinterpret_cast<std::complex<float>*>(work), &lwork, rwork, &lrwork, iwork, &liwork, info); |
| } |
| |
| template<> void lapackSyevd<double>(char jobz, char uplo, int n, double *a, int lda, double *w, double *work, int lwork, double *rwork, int lrwork, int *iwork, int liwork, int *info) { |
| (void)rwork; // unused |
| (void)lrwork; // unused |
| dsyevd_(&jobz, &uplo, &n, a, &lda, w, work, &lwork, iwork, &liwork, info); |
| } |
| |
| template<> void lapackSyevd<float>(char jobz, char uplo, int n, float *a, int lda, float *w, float *work, int lwork, float *rwork, int lrwork, int *iwork, int liwork, int *info) { |
| (void)rwork; // unused |
| (void)lrwork; // unused |
| ssyevd_(&jobz, &uplo, &n, a, &lda, w, work, &lwork, iwork, &liwork, info); |
| } |
| |
| template<> void lapackEig<double>(char jobvl, char jobvr, int n, double *a, int lda, double *w, double* vl, int ldvl, double *vr, int ldvr, double *work, int lwork, double *rwork, int *info) { |
| // lapack [sd]geev wants to separate output arrays: wr and wi for the real |
| // and imaginary parts |
| double *wr = w; |
| double *wi = w + n; |
| (void)rwork; // unused |
| dgeev_(&jobvl, &jobvr, &n, a, &lda, wr, wi, vl, &ldvl, vr, &ldvr, work, &lwork, info); |
| } |
| |
| template<> void lapackEig<float>(char jobvl, char jobvr, int n, float *a, int lda, float *w, float* vl, int ldvl, float *vr, int ldvr, float *work, int lwork, float *rwork, int *info) { |
| // lapack [sd]geev wants to separate output arrays: wr and wi for the real |
| // and imaginary parts |
| float *wr = w; |
| float *wi = w + n; |
| (void)rwork; // unused |
| sgeev_(&jobvl, &jobvr, &n, a, &lda, wr, wi, vl, &ldvl, vr, &ldvr, work, &lwork, info); |
| } |
| |
| template<> void lapackEig<c10::complex<double>, double>(char jobvl, char jobvr, int n, c10::complex<double> *a, int lda, c10::complex<double> *w, c10::complex<double> *vl, int ldvl, c10::complex<double> *vr, int ldvr, c10::complex<double> *work, int lwork, double *rwork, int *info) { |
| zgeev_(&jobvl, &jobvr, &n, |
| reinterpret_cast<std::complex<double>*>(a), &lda, |
| reinterpret_cast<std::complex<double>*>(w), |
| reinterpret_cast<std::complex<double>*>(vl), &ldvl, |
| reinterpret_cast<std::complex<double>*>(vr), &ldvr, |
| reinterpret_cast<std::complex<double>*>(work), &lwork, |
| rwork, info); |
| } |
| |
| template<> void lapackEig<c10::complex<float>, float>(char jobvl, char jobvr, int n, c10::complex<float> *a, int lda, c10::complex<float> *w, c10::complex<float> *vl, int ldvl, c10::complex<float> *vr, int ldvr, c10::complex<float> *work, int lwork, float *rwork, int *info) { |
| cgeev_(&jobvl, &jobvr, &n, |
| reinterpret_cast<std::complex<float>*>(a), &lda, |
| reinterpret_cast<std::complex<float>*>(w), |
| reinterpret_cast<std::complex<float>*>(vl), &ldvl, |
| reinterpret_cast<std::complex<float>*>(vr), &ldvr, |
| reinterpret_cast<std::complex<float>*>(work), &lwork, |
| rwork, info); |
| } |
| |
| template<> void lapackSvd<c10::complex<double>, double>(char jobz, int m, int n, c10::complex<double> *a, int lda, |
| double *s, c10::complex<double> *u, int ldu, c10::complex<double> *vt, int ldvt, c10::complex<double> *work, int lwork, double *rwork, int *iwork, int *info) { |
| zgesdd_(&jobz, &m, &n, reinterpret_cast<std::complex<double>*>(a), &lda, s, reinterpret_cast<std::complex<double>*>(u), &ldu, |
| reinterpret_cast<std::complex<double>*>(vt), &ldvt, reinterpret_cast<std::complex<double>*>(work), &lwork, rwork, iwork, info); |
| } |
| |
| template<> void lapackSvd<c10::complex<float>, float>(char jobz, int m, int n, c10::complex<float> *a, int lda, |
| float *s, c10::complex<float> *u, int ldu, c10::complex<float> *vt, int ldvt, c10::complex<float> *work, int lwork, float *rwork, int *iwork, int *info) { |
| cgesdd_(&jobz, &m, &n, reinterpret_cast<std::complex<float>*>(a), &lda, s, reinterpret_cast<std::complex<float>*>(u), &ldu, |
| reinterpret_cast<std::complex<float>*>(vt), &ldvt, reinterpret_cast<std::complex<float>*>(work), &lwork, rwork, iwork, info); |
| } |
| |
| template<> void lapackSvd<double>(char jobz, int m, int n, double *a, int lda, |
| double *s, double *u, int ldu, double *vt, int ldvt, double *work, int lwork, double *rwork, int *iwork, int *info) { |
| dgesdd_(&jobz, &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work, &lwork, iwork, info); |
| } |
| |
| template<> void lapackSvd<float>(char jobz, int m, int n, float *a, int lda, |
| float *s, float *u, int ldu, float *vt, int ldvt, float *work, int lwork, float *rwork, int *iwork, int *info) { |
| sgesdd_(&jobz, &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work, &lwork, iwork, info); |
| } |
| |
| template <> |
| void lapackLdlSymmetric<double>( |
| char uplo, |
| int n, |
| double* a, |
| int lda, |
| int* ipiv, |
| double* work, |
| int lwork, |
| int* info) { |
| dsytrf_(&uplo, &n, a, &lda, ipiv, work, &lwork, info); |
| } |
| |
| template <> |
| void lapackLdlSymmetric<float>( |
| char uplo, |
| int n, |
| float* a, |
| int lda, |
| int* ipiv, |
| float* work, |
| int lwork, |
| int* info) { |
| ssytrf_(&uplo, &n, a, &lda, ipiv, work, &lwork, info); |
| } |
| |
| template <> |
| void lapackLdlSymmetric<c10::complex<double>>( |
| char uplo, |
| int n, |
| c10::complex<double>* a, |
| int lda, |
| int* ipiv, |
| c10::complex<double>* work, |
| int lwork, |
| int* info) { |
| zsytrf_( |
| &uplo, |
| &n, |
| reinterpret_cast<std::complex<double>*>(a), |
| &lda, |
| ipiv, |
| reinterpret_cast<std::complex<double>*>(work), |
| &lwork, |
| info); |
| } |
| |
| template <> |
| void lapackLdlSymmetric<c10::complex<float>>( |
| char uplo, |
| int n, |
| c10::complex<float>* a, |
| int lda, |
| int* ipiv, |
| c10::complex<float>* work, |
| int lwork, |
| int* info) { |
| csytrf_( |
| &uplo, |
| &n, |
| reinterpret_cast<std::complex<float>*>(a), |
| &lda, |
| ipiv, |
| reinterpret_cast<std::complex<float>*>(work), |
| &lwork, |
| info); |
| } |
| |
| template <> |
| void lapackLdlHermitian<double>( |
| char uplo, |
| int n, |
| double* a, |
| int lda, |
| int* ipiv, |
| double* work, |
| int lwork, |
| int* info) { |
| dsytrf_(&uplo, &n, a, &lda, ipiv, work, &lwork, info); |
| } |
| |
| template <> |
| void lapackLdlHermitian<float>( |
| char uplo, |
| int n, |
| float* a, |
| int lda, |
| int* ipiv, |
| float* work, |
| int lwork, |
| int* info) { |
| ssytrf_(&uplo, &n, a, &lda, ipiv, work, &lwork, info); |
| } |
| |
| template <> |
| void lapackLdlHermitian<c10::complex<double>>( |
| char uplo, |
| int n, |
| c10::complex<double>* a, |
| int lda, |
| int* ipiv, |
| c10::complex<double>* work, |
| int lwork, |
| int* info) { |
| zhetrf_( |
| &uplo, |
| &n, |
| reinterpret_cast<std::complex<double>*>(a), |
| &lda, |
| ipiv, |
| reinterpret_cast<std::complex<double>*>(work), |
| &lwork, |
| info); |
| } |
| |
| template <> |
| void lapackLdlHermitian<c10::complex<float>>( |
| char uplo, |
| int n, |
| c10::complex<float>* a, |
| int lda, |
| int* ipiv, |
| c10::complex<float>* work, |
| int lwork, |
| int* info) { |
| chetrf_( |
| &uplo, |
| &n, |
| reinterpret_cast<std::complex<float>*>(a), |
| &lda, |
| ipiv, |
| reinterpret_cast<std::complex<float>*>(work), |
| &lwork, |
| info); |
| } |
| |
| template <> |
| void lapackLdlSolveSymmetric<double>( |
| char uplo, |
| int n, |
| int nrhs, |
| double* a, |
| int lda, |
| int* ipiv, |
| double* b, |
| int ldb, |
| int* info) { |
| dsytrs_(&uplo, &n, &nrhs, a, &lda, ipiv, b, &ldb, info); |
| } |
| |
| template <> |
| void lapackLdlSolveSymmetric<float>( |
| char uplo, |
| int n, |
| int nrhs, |
| float* a, |
| int lda, |
| int* ipiv, |
| float* b, |
| int ldb, |
| int* info) { |
| ssytrs_(&uplo, &n, &nrhs, a, &lda, ipiv, b, &ldb, info); |
| } |
| |
| template <> |
| void lapackLdlSolveSymmetric<c10::complex<double>>( |
| char uplo, |
| int n, |
| int nrhs, |
| c10::complex<double>* a, |
| int lda, |
| int* ipiv, |
| c10::complex<double>* b, |
| int ldb, |
| int* info) { |
| zsytrs_( |
| &uplo, |
| &n, |
| &nrhs, |
| reinterpret_cast<std::complex<double>*>(a), |
| &lda, |
| ipiv, |
| reinterpret_cast<std::complex<double>*>(b), |
| &ldb, |
| info); |
| } |
| |
| template <> |
| void lapackLdlSolveSymmetric<c10::complex<float>>( |
| char uplo, |
| int n, |
| int nrhs, |
| c10::complex<float>* a, |
| int lda, |
| int* ipiv, |
| c10::complex<float>* b, |
| int ldb, |
| int* info) { |
| csytrs_( |
| &uplo, |
| &n, |
| &nrhs, |
| reinterpret_cast<std::complex<float>*>(a), |
| &lda, |
| ipiv, |
| reinterpret_cast<std::complex<float>*>(b), |
| &ldb, |
| info); |
| } |
| |
| template <> |
| void lapackLdlSolveHermitian<double>( |
| char uplo, |
| int n, |
| int nrhs, |
| double* a, |
| int lda, |
| int* ipiv, |
| double* b, |
| int ldb, |
| int* info) { |
| dsytrs_(&uplo, &n, &nrhs, a, &lda, ipiv, b, &ldb, info); |
| } |
| |
| template <> |
| void lapackLdlSolveHermitian<float>( |
| char uplo, |
| int n, |
| int nrhs, |
| float* a, |
| int lda, |
| int* ipiv, |
| float* b, |
| int ldb, |
| int* info) { |
| ssytrs_(&uplo, &n, &nrhs, a, &lda, ipiv, b, &ldb, info); |
| } |
| |
| template <> |
| void lapackLdlSolveHermitian<c10::complex<double>>( |
| char uplo, |
| int n, |
| int nrhs, |
| c10::complex<double>* a, |
| int lda, |
| int* ipiv, |
| c10::complex<double>* b, |
| int ldb, |
| int* info) { |
| zhetrs_( |
| &uplo, |
| &n, |
| &nrhs, |
| reinterpret_cast<std::complex<double>*>(a), |
| &lda, |
| ipiv, |
| reinterpret_cast<std::complex<double>*>(b), |
| &ldb, |
| info); |
| } |
| |
| template <> |
| void lapackLdlSolveHermitian<c10::complex<float>>( |
| char uplo, |
| int n, |
| int nrhs, |
| c10::complex<float>* a, |
| int lda, |
| int* ipiv, |
| c10::complex<float>* b, |
| int ldb, |
| int* info) { |
| chetrs_( |
| &uplo, |
| &n, |
| &nrhs, |
| reinterpret_cast<std::complex<float>*>(a), |
| &lda, |
| ipiv, |
| reinterpret_cast<std::complex<float>*>(b), |
| &ldb, |
| info); |
| } |
| |
| template<> void lapackLuSolve<c10::complex<double>>(char trans, int n, int nrhs, c10::complex<double> *a, int lda, int *ipiv, c10::complex<double> *b, int ldb, int *info) { |
| zgetrs_(&trans, &n, &nrhs, reinterpret_cast<std::complex<double>*>(a), &lda, ipiv, reinterpret_cast<std::complex<double>*>(b), &ldb, info); |
| } |
| |
| template<> void lapackLuSolve<c10::complex<float>>(char trans, int n, int nrhs, c10::complex<float> *a, int lda, int *ipiv, c10::complex<float> *b, int ldb, int *info) { |
| cgetrs_(&trans, &n, &nrhs, reinterpret_cast<std::complex<float>*>(a), &lda, ipiv, reinterpret_cast<std::complex<float>*>(b), &ldb, info); |
| } |
| |
| template<> void lapackLuSolve<double>(char trans, int n, int nrhs, double *a, int lda, int *ipiv, double *b, int ldb, int *info) { |
| dgetrs_(&trans, &n, &nrhs, a, &lda, ipiv, b, &ldb, info); |
| } |
| |
| template<> void lapackLuSolve<float>(char trans, int n, int nrhs, float *a, int lda, int *ipiv, float *b, int ldb, int *info) { |
| sgetrs_(&trans, &n, &nrhs, a, &lda, ipiv, b, &ldb, info); |
| } |
| |
| template<> void lapackGels<c10::complex<double>>( |
| char trans, int m, int n, int nrhs, |
| c10::complex<double> *a, int lda, c10::complex<double> *b, int ldb, |
| c10::complex<double> *work, int lwork, int *info) { |
| zgels_(&trans, &m, &n, &nrhs, |
| reinterpret_cast<std::complex<double>*>(a), &lda, |
| reinterpret_cast<std::complex<double>*>(b), &ldb, |
| reinterpret_cast<std::complex<double>*>(work), &lwork, info); |
| } |
| |
| template<> void lapackGels<c10::complex<float>>( |
| char trans, int m, int n, int nrhs, |
| c10::complex<float> *a, int lda, c10::complex<float> *b, int ldb, |
| c10::complex<float> *work, int lwork, int *info) { |
| cgels_(&trans, &m, &n, &nrhs, |
| reinterpret_cast<std::complex<float>*>(a), &lda, |
| reinterpret_cast<std::complex<float>*>(b), &ldb, |
| reinterpret_cast<std::complex<float>*>(work), &lwork, info); |
| } |
| |
| template<> void lapackGels<double>( |
| char trans, int m, int n, int nrhs, |
| double *a, int lda, double *b, int ldb, |
| double *work, int lwork, int *info) { |
| dgels_(&trans, &m, &n, &nrhs, |
| a, &lda, b, &ldb, work, &lwork, info); |
| } |
| |
| template<> void lapackGels<float>( |
| char trans, int m, int n, int nrhs, |
| float *a, int lda, float *b, int ldb, |
| float *work, int lwork, int *info) { |
| sgels_(&trans, &m, &n, &nrhs, |
| a, &lda, b, &ldb, work, &lwork, info); |
| } |
| |
| template<> void lapackGelsd<c10::complex<double>, double>( |
| int m, int n, int nrhs, |
| c10::complex<double> *a, int lda, c10::complex<double> *b, int ldb, |
| double *s, double rcond, int *rank, |
| c10::complex<double> *work, int lwork, |
| double *rwork, int *iwork, int *info) { |
| zgelsd_(&m, &n, &nrhs, |
| reinterpret_cast<std::complex<double>*>(a), &lda, |
| reinterpret_cast<std::complex<double>*>(b), &ldb, |
| s, &rcond, rank, |
| reinterpret_cast<std::complex<double>*>(work), &lwork, |
| rwork, iwork, info); |
| } |
| |
| template<> void lapackGelsd<c10::complex<float>, float>( |
| int m, int n, int nrhs, |
| c10::complex<float> *a, int lda, c10::complex<float> *b, int ldb, |
| float *s, float rcond, int *rank, |
| c10::complex<float> *work, int lwork, |
| float *rwork, int *iwork, int *info) { |
| cgelsd_(&m, &n, &nrhs, |
| reinterpret_cast<std::complex<float>*>(a), &lda, |
| reinterpret_cast<std::complex<float>*>(b), &ldb, |
| s, &rcond, rank, |
| reinterpret_cast<std::complex<float>*>(work), &lwork, |
| rwork, iwork, info); |
| } |
| |
| template<> void lapackGelsd<double>( |
| int m, int n, int nrhs, |
| double *a, int lda, double *b, int ldb, |
| double *s, double rcond, int *rank, |
| double *work, int lwork, |
| double *rwork, int *iwork, int *info) { |
| dgelsd_(&m, &n, &nrhs, |
| a, &lda, b, &ldb, |
| s, &rcond, rank, |
| work, &lwork, iwork, info); |
| } |
| |
| template<> void lapackGelsd<float>( |
| int m, int n, int nrhs, |
| float *a, int lda, float *b, int ldb, |
| float *s, float rcond, int *rank, |
| float *work, int lwork, |
| float *rwork, int *iwork, int *info) { |
| sgelsd_(&m, &n, &nrhs, |
| a, &lda, b, &ldb, |
| s, &rcond, rank, |
| work, &lwork, iwork, info); |
| } |
| |
| template<> void lapackGelsy<c10::complex<double>, double>( |
| int m, int n, int nrhs, |
| c10::complex<double> *a, int lda, c10::complex<double> *b, int ldb, |
| int *jpvt, double rcond, int *rank, |
| c10::complex<double> *work, int lwork, double *rwork, int *info) { |
| zgelsy_(&m, &n, &nrhs, |
| reinterpret_cast<std::complex<double>*>(a), &lda, |
| reinterpret_cast<std::complex<double>*>(b), &ldb, |
| jpvt, &rcond, rank, |
| reinterpret_cast<std::complex<double>*>(work), &lwork, |
| rwork, info); |
| } |
| |
| template<> void lapackGelsy<c10::complex<float>, float>( |
| int m, int n, int nrhs, |
| c10::complex<float> *a, int lda, c10::complex<float> *b, int ldb, |
| int *jpvt, float rcond, int *rank, |
| c10::complex<float> *work, int lwork, float *rwork, int *info) { |
| cgelsy_(&m, &n, &nrhs, |
| reinterpret_cast<std::complex<float>*>(a), &lda, |
| reinterpret_cast<std::complex<float>*>(b), &ldb, |
| jpvt, &rcond, rank, |
| reinterpret_cast<std::complex<float>*>(work), &lwork, |
| rwork, info); |
| } |
| |
| template<> void lapackGelsy<double>( |
| int m, int n, int nrhs, |
| double *a, int lda, double *b, int ldb, |
| int *jpvt, double rcond, int *rank, |
| double *work, int lwork, double *rwork, int *info) { |
| dgelsy_(&m, &n, &nrhs, |
| a, &lda, b, &ldb, |
| jpvt, &rcond, rank, |
| work, &lwork, info); |
| } |
| |
| template<> void lapackGelsy<float>( |
| int m, int n, int nrhs, |
| float *a, int lda, float *b, int ldb, |
| int *jpvt, float rcond, int *rank, |
| float *work, int lwork, float *rwork, int *info) { |
| sgelsy_(&m, &n, &nrhs, |
| a, &lda, b, &ldb, |
| jpvt, &rcond, rank, |
| work, &lwork, info); |
| } |
| |
| template<> void lapackGelss<c10::complex<double>, double>( |
| int m, int n, int nrhs, |
| c10::complex<double> *a, int lda, c10::complex<double> *b, int ldb, |
| double *s, double rcond, int *rank, |
| c10::complex<double> *work, int lwork, |
| double *rwork, int *info |
| ) { |
| zgelss_(&m, &n, &nrhs, |
| reinterpret_cast<std::complex<double>*>(a), &lda, |
| reinterpret_cast<std::complex<double>*>(b), &ldb, |
| s, &rcond, rank, |
| reinterpret_cast<std::complex<double>*>(work), &lwork, |
| rwork, info); |
| } |
| |
| template<> void lapackGelss<c10::complex<float>, float>( |
| int m, int n, int nrhs, |
| c10::complex<float> *a, int lda, c10::complex<float> *b, int ldb, |
| float *s, float rcond, int *rank, |
| c10::complex<float> *work, int lwork, |
| float *rwork, int *info |
| ) { |
| cgelss_(&m, &n, &nrhs, |
| reinterpret_cast<std::complex<float>*>(a), &lda, |
| reinterpret_cast<std::complex<float>*>(b), &ldb, |
| s, &rcond, rank, |
| reinterpret_cast<std::complex<float>*>(work), &lwork, |
| rwork, info); |
| } |
| |
| template<> void lapackGelss<double>( |
| int m, int n, int nrhs, |
| double *a, int lda, double *b, int ldb, |
| double *s, double rcond, int *rank, |
| double *work, int lwork, |
| double *rwork, int *info) { |
| dgelss_(&m, &n, &nrhs, |
| a, &lda, b, &ldb, |
| s, &rcond, rank, |
| work, &lwork, info); |
| } |
| |
| template<> void lapackGelss<float>( |
| int m, int n, int nrhs, |
| float *a, int lda, float *b, int ldb, |
| float *s, float rcond, int *rank, |
| float *work, int lwork, |
| float *rwork, int *info) { |
| sgelss_(&m, &n, &nrhs, |
| a, &lda, b, &ldb, |
| s, &rcond, rank, |
| work, &lwork, info); |
| } |
| #endif |
| |
| #if AT_BUILD_WITH_BLAS() |
| template<> void blasTriangularSolve<c10::complex<double>>(char side, char uplo, char trans, char diag, int n, int nrhs, c10::complex<double> *a, int lda, c10::complex<double> *b, int ldb) { |
| std::complex<double> one{1., 0.}; |
| ztrsm_(&side, &uplo, &trans, &diag, &n, &nrhs, &one, reinterpret_cast<std::complex<double>*>(a), &lda, reinterpret_cast<std::complex<double>*>(b), &ldb); |
| } |
| |
| template<> void blasTriangularSolve<c10::complex<float>>(char side, char uplo, char trans, char diag, int n, int nrhs, c10::complex<float> *a, int lda, c10::complex<float> *b, int ldb) { |
| std::complex<float> one{1.f, 0.f}; |
| ctrsm_(&side, &uplo, &trans, &diag, &n, &nrhs, &one, reinterpret_cast<std::complex<float>*>(a), &lda, reinterpret_cast<std::complex<float>*>(b), &ldb); |
| } |
| |
| template<> void blasTriangularSolve<double>(char side, char uplo, char trans, char diag, int n, int nrhs, double *a, int lda, double *b, int ldb) { |
| auto one = 1.; |
| dtrsm_(&side, &uplo, &trans, &diag, &n, &nrhs, &one, a, &lda, b, &ldb); |
| } |
| |
| template<> void blasTriangularSolve<float>(char side, char uplo, char trans, char diag, int n, int nrhs, float *a, int lda, float *b, int ldb) { |
| auto one = 1.f; |
| strsm_(&side, &uplo, &trans, &diag, &n, &nrhs, &one, a, &lda, b, &ldb); |
| } |
| #endif |
| |
| void _linalg_check_errors( |
| const Tensor& infos, |
| const c10::string_view api_name, |
| bool is_matrix) { |
| TORCH_INTERNAL_ASSERT(infos.scalar_type() == kInt); |
| TORCH_INTERNAL_ASSERT(infos.is_contiguous()); |
| if (infos.is_meta()) { |
| return; |
| } |
| |
| // If it's all zeros, we return early. |
| // We optimise for the most likely case. |
| if (C10_LIKELY(!infos.any().item<bool>())) { |
| return; |
| } |
| |
| int32_t info; |
| std::string batch_str; |
| if (is_matrix) { |
| info = infos.item<int>(); |
| // batch_str needn't be set for matrices |
| } else { |
| // Find the first non-zero info |
| auto infos_cpu = infos.to(at::kCPU); |
| auto ptr = infos_cpu.data_ptr<int32_t>(); |
| auto n = infos.numel(); |
| auto info_ptr = std::find_if(ptr, ptr + n, [](int32_t x) { return x != 0; }); |
| info = *info_ptr; |
| batch_str = ": (Batch element " + std::to_string(std::distance(ptr, info_ptr)) + ")"; |
| } |
| |
| if (info < 0) { |
| // Reference LAPACK 3.10+ changed `info` behavior for inputs with non-finite values |
| // Previously, it would return `info` > 0, but now it returns `info` = -4 |
| // OpenBLAS 0.3.15+ uses the Reference LAPACK 3.10+. |
| // MKL 2022.0+ uses the Reference LAPACK 3.10+. |
| // Older version of MKL and OpenBLAS follow the old behavior (return `info` > 0). |
| // Here we check for the case where `info` is -4 and raise an error |
| if (api_name.find("svd") != api_name.npos) { |
| TORCH_CHECK_LINALG(info != -4, api_name, batch_str, |
| ": The algorithm failed to converge because the input matrix contained non-finite values."); |
| } |
| TORCH_INTERNAL_ASSERT(false, api_name, batch_str, |
| ": Argument ", -info, " has illegal value. Most certainly there is a bug in the implementation calling the backend library."); |
| } else if (info > 0) { |
| if (api_name.find("inv") != api_name.npos) { |
| // inv, inverse, cholesky_inverse, etc. |
| TORCH_CHECK_LINALG(false, api_name, batch_str, |
| ": The diagonal element ", info, " is zero, the inversion could not be completed because the input matrix is singular."); |
| } else if (api_name.find("solve") != api_name.npos) { |
| // solve, linalg_solve, cholesky_solve, etc. |
| TORCH_CHECK_LINALG(false, api_name, batch_str, |
| ": The solver failed because the input matrix is singular."); |
| } else if (api_name.find("cholesky") != api_name.npos) { |
| TORCH_CHECK_LINALG(false, api_name, batch_str, |
| ": The factorization could not be completed because the input is not positive-definite (the leading minor of order ", info, " is not positive-definite)."); |
| } else if (api_name.find("svd") != api_name.npos) { |
| TORCH_CHECK_LINALG(false, api_name, batch_str, |
| ": The algorithm failed to converge because the input matrix is ill-conditioned or has too many repeated singular values (error code: ", info, ")."); |
| } else if (api_name.find("eig") != api_name.npos || api_name.find("syevd") != api_name.npos) { |
| TORCH_CHECK_LINALG(false, api_name, batch_str, |
| ": The algorithm failed to converge because the input matrix is ill-conditioned or has too many repeated eigenvalues (error code: ", info, ")."); |
| } else if (api_name.find("lstsq") != api_name.npos) { |
| TORCH_CHECK_LINALG(false, api_name, batch_str, |
| ": The least squares solution could not be computed because the input matrix does not have full rank (error code: ", info, ")."); |
| } else if (api_name.find("lu_factor") != api_name.npos) { |
| TORCH_CHECK(false, api_name, batch_str, |
| ": U[", info, ",", info, "] is zero and using it on lu_solve would result in a division by zero. " |
| "If you still want to perform the factorization, consider calling linalg.lu(A, pivot) or " |
| "linalg.lu_factor_ex(A, pivot)"); |
| } else { |
| TORCH_INTERNAL_ASSERT(false, api_name, ": Unknown error code: ", info, "."); |
| } |
| } |
| // We should never reach this point as info was non-zero |
| TORCH_INTERNAL_ASSERT(false); |
| } |
| |
| // If an input requires fw or bw grad then we need to go down a different |
| // (slower) path to ensure that the gradients are computable. |
| // That is what `_may_require_fw_or_bw_grad` is helpful for. |
| // |
| // Why is there a isTensorSubclassLike check here? |
| // Without it, this function can lead to composite compliance problems, which |
| // may lead to bugs in functorch, where a Tensor Subclass that doesn't |
| // require grad may wrap a Tensor subclass that requires grad. |
| bool _may_require_fw_or_bw_grad(const Tensor& input) { |
| return ((at::GradMode::is_enabled() && input.requires_grad()) |
| || input._fw_grad(/*level */ 0).defined() |
| || isTensorSubclassLike(input)); |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ linalg.inv ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| TORCH_IMPL_FUNC(linalg_inv_ex_out)(const Tensor& A, bool check_errors, const Tensor& result, const Tensor& info) { |
| // Fill result with the identity |
| result.zero_(); |
| result.diagonal(0, -2, -1).fill_(1.); |
| at::linalg_solve_ex_out(const_cast<Tensor&>(result), const_cast<Tensor&>(info), A, result, /*left*/true); |
| if (check_errors) { |
| at::_linalg_check_errors(info, "linalg.inv_ex", A.dim() == 2); |
| } |
| } |
| |
| Tensor& linalg_inv_out(const Tensor& A, Tensor& result) { |
| auto info = at::empty({0}, A.options().dtype(kInt)); |
| at::linalg_inv_ex_out(result, info, A); |
| at::_linalg_check_errors(info, "linalg.inv", A.dim() == 2); |
| return result; |
| } |
| |
| Tensor linalg_inv(const Tensor& A) { |
| Tensor result, info; |
| std::tie(result, info) = at::linalg_inv_ex(A); |
| at::_linalg_check_errors(info, "linalg.inv", A.dim() == 2); |
| return result; |
| } |
| |
| Tensor& inverse_out(const Tensor& A, Tensor& result) { |
| return at::linalg_inv_out(result, A); |
| } |
| |
| Tensor inverse(const Tensor& A) { |
| return at::linalg_inv(A); |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cholesky_solve ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| template<typename scalar_t> |
| static void apply_cholesky_solve(Tensor& b, Tensor& A, bool upper, Tensor& infos) { |
| #if !AT_BUILD_WITH_LAPACK() |
| AT_ERROR("cholesky_solve: LAPACK library not found in compilation"); |
| #else |
| char uplo = upper ? 'U' : 'L'; |
| |
| auto A_data = A.data_ptr<scalar_t>(); |
| auto b_data = b.data_ptr<scalar_t>(); |
| auto infos_data = infos.data_ptr<int>(); |
| auto A_mat_stride = matrixStride(A); |
| auto b_mat_stride = matrixStride(b); |
| auto batch_size = batchCount(A); |
| auto n = A.size(-2); |
| auto ldab = std::max<int64_t>(1, n); |
| auto nrhs = b.size(-1); |
| |
| // NOLINTNEXTLINE(cppcoreguidelines-init-variables) |
| int info; |
| for (const auto i : c10::irange(batch_size)) { |
| scalar_t* A_working_ptr = &A_data[i * A_mat_stride]; |
| scalar_t* b_working_ptr = &b_data[i * b_mat_stride]; |
| lapackCholeskySolve<scalar_t>(uplo, n, nrhs, A_working_ptr, ldab, b_working_ptr, ldab, &info); |
| infos_data[i] = info; |
| if (info != 0) { |
| return; |
| } |
| } |
| #endif |
| } |
| |
| Tensor _cholesky_solve_helper_cpu(const Tensor& self, const Tensor& A, bool upper) { |
| auto self_working_copy = cloneBatchedColumnMajor(self); |
| auto A_working_copy = cloneBatchedColumnMajor(A); |
| auto infos = at::zeros({batchCount(self)}, self.options().dtype(kInt)); |
| AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(self.scalar_type(), "cholesky_solve_cpu", [&]{ |
| apply_cholesky_solve<scalar_t>(self_working_copy, A_working_copy, upper, infos); |
| }); |
| |
| at::_linalg_check_errors(infos, "cholesky_solve_cpu", self.dim() == 2); |
| return self_working_copy; |
| } |
| |
| // Supports arbitrary batch dimensions for self and A |
| Tensor cholesky_solve(const Tensor& self, const Tensor& A, bool upper) { |
| TORCH_CHECK(self.dim() >= 2, |
| "b should have at least 2 dimensions, but has ", self.dim(), " dimensions instead"); |
| TORCH_CHECK(A.dim() >= 2, |
| "u should have at least 2 dimensions, but has ", A.dim(), " dimensions instead"); |
| Tensor self_broadcasted, A_broadcasted; |
| std::tie(self_broadcasted, A_broadcasted) = _linalg_broadcast_batch_dims(self, A, "cholesky_solve"); |
| return at::_cholesky_solve_helper(self_broadcasted, A_broadcasted, upper); |
| } |
| |
| Tensor& cholesky_solve_out(const Tensor& self, const Tensor& A, bool upper, Tensor& result) { |
| checkSameDevice("cholesky_solve", result, self); |
| checkLinalgCompatibleDtype("cholesky_solve", result, self); |
| Tensor result_tmp = at::cholesky_solve(self, A, upper); |
| at::native::resize_output(result, result_tmp.sizes()); |
| result.copy_(result_tmp); |
| return result; |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cholesky ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| DEFINE_DISPATCH(cholesky_stub); |
| |
| Tensor cholesky(const Tensor &self, bool upper) { |
| TORCH_WARN_ONCE( |
| "torch.cholesky is deprecated in favor of torch.linalg.cholesky and will be ", |
| "removed in a future PyTorch release.\n", |
| "L = torch.cholesky(A)\n", |
| "should be replaced with\n", |
| "L = torch.linalg.cholesky(A)\n", |
| "and\n" |
| "U = torch.cholesky(A, upper=True)\n", |
| "should be replaced with\n", |
| "U = torch.linalg.cholesky(A).mH().\n" |
| "This transform will produce equivalent results for all valid (symmetric positive definite) inputs." |
| ); |
| if (self.numel() == 0) { |
| return at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT); |
| } |
| squareCheckInputs(self, "cholesky"); |
| |
| auto raw_cholesky_output = cloneBatchedColumnMajor(self); |
| auto info_shape = IntArrayRef( |
| self.sizes().cbegin(), self.sizes().cend() - 2); // self.shape[:-2] |
| auto info = at::empty({info_shape}, self.options().dtype(kInt)); |
| |
| // fill the raw_cholesky_output with the result |
| cholesky_stub(self.device().type(), raw_cholesky_output, info, upper); |
| |
| at::_linalg_check_errors(info, "cholesky", self.dim() == 2); |
| |
| if (upper) { |
| return raw_cholesky_output.triu_(); |
| } else { |
| return raw_cholesky_output.tril_(); |
| } |
| } |
| |
| Tensor& cholesky_out(const Tensor &self, bool upper, Tensor &result) { |
| TORCH_WARN_ONCE( |
| "torch.cholesky is deprecated in favor of torch.linalg.cholesky and will be ", |
| "removed in a future PyTorch release.\n", |
| "L = torch.cholesky(A)\n", |
| "should be replaced with\n", |
| "L = torch.linalg.cholesky(A)\n", |
| "and\n" |
| "U = torch.cholesky(A, upper=True)\n", |
| "should be replaced with\n", |
| "U = torch.linalg.cholesky(A).mH().\n" |
| "This transform will produce equivalent results for all valid (symmetric positive definite) inputs." |
| ); |
| checkSameDevice("cholesky", result, self); |
| checkLinalgCompatibleDtype("cholesky", result, self); |
| Tensor result_tmp = at::cholesky(self, upper); |
| at::native::resize_output(result, result_tmp.sizes()); |
| result.copy_(result_tmp); |
| return result; |
| } |
| |
| TORCH_IMPL_FUNC(linalg_cholesky_ex_out)(const Tensor& A, |
| bool upper, |
| bool check_errors, |
| const Tensor& L, |
| const Tensor& info) { |
| // Nothing to do there |
| if (L.numel() == 0) { |
| info.zero_(); |
| return; |
| } |
| const auto cpu = A.device() == kCPU; |
| |
| // We can perform this optimisation just on CPU as it fails for MAGMA |
| // due to some bug |
| if (cpu) { |
| if (upper) { |
| at::triu_out(const_cast<Tensor&>(L), A); |
| } else { |
| at::tril_out(const_cast<Tensor&>(L), A); |
| } |
| } else { |
| L.copy_(A); |
| } |
| |
| cholesky_stub(L.device().type(), L, info, upper); |
| |
| if (!cpu) { |
| if (upper) { |
| L.triu_(); |
| } else { |
| L.tril_(); |
| } |
| } |
| |
| if (check_errors) { |
| at::_linalg_check_errors(info, "linalg.cholesky_ex", A.dim() == 2); |
| } |
| } |
| |
| Tensor linalg_cholesky(const Tensor& A, bool upper) { |
| Tensor L, info; |
| std::tie(L, info) = at::linalg_cholesky_ex(A, upper, /*check_errors=*/false); |
| at::_linalg_check_errors(info, "linalg.cholesky", A.dim() == 2); |
| return L; |
| } |
| |
| Tensor& linalg_cholesky_out(const Tensor& A, bool upper, Tensor& L) { |
| auto info = at::empty({0}, A.options().dtype(kInt)); |
| at::linalg_cholesky_ex_out(L, info, A, upper, /*check_errors=*/false); |
| at::_linalg_check_errors(info, "linalg.cholesky", A.dim() == 2); |
| return L; |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cholesky_inverse ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| DEFINE_DISPATCH(cholesky_inverse_stub); |
| |
| Tensor& cholesky_inverse_out_info(Tensor& result, Tensor& infos, const Tensor& input, bool upper) { |
| TORCH_INTERNAL_ASSERT(input.dim() >= 2); |
| TORCH_INTERNAL_ASSERT(input.size(-1) == input.size(-2)); |
| |
| TORCH_INTERNAL_ASSERT(result.scalar_type() == input.scalar_type()); |
| TORCH_INTERNAL_ASSERT(result.device() == input.device()); |
| |
| TORCH_INTERNAL_ASSERT(infos.scalar_type() == at::kInt); |
| TORCH_INTERNAL_ASSERT(infos.device() == at::kCPU); |
| TORCH_INTERNAL_ASSERT(infos.numel() == std::max<int64_t>(1, batchCount(input))); |
| |
| // if result has no elements we can modify it |
| if (result.numel() == 0) { |
| at::native::resize_as_(result, input.mT(), MemoryFormat::Contiguous); |
| result.transpose_(-2, -1); |
| } |
| |
| // result tensor must be in batched column major order (Fortran contiguous) |
| TORCH_INTERNAL_ASSERT(result.mT().is_contiguous()); |
| TORCH_INTERNAL_ASSERT(result.sizes().equals(input.sizes())); |
| |
| // cholesky_inverse_stub (apply_cholesky_inverse) performs calculations in-place and result must be a copy of input |
| result.copy_(input); |
| |
| // infos must be contiguous |
| TORCH_INTERNAL_ASSERT(infos.is_contiguous()); |
| infos.fill_(0); |
| |
| result = cholesky_inverse_stub(result.device().type(), result, infos, upper); |
| return result; |
| } |
| |
| Tensor& cholesky_inverse_out(const Tensor &input, bool upper, Tensor &result) { |
| squareCheckInputs(input, "cholesky_inverse"); |
| checkSameDevice("cholesky_inverse", result, input); |
| checkLinalgCompatibleDtype("cholesky_inverse", result, input); |
| |
| // MAGMA requires 'infos' to reside in CPU memory, therefore we create 'infos' only on CPU for now. |
| auto infos = at::zeros({std::max<int64_t>(1, batchCount(input))}, input.options().dtype(kInt).device(kCPU)); |
| |
| bool result_input_same_type = (result.scalar_type() == input.scalar_type()); |
| bool result_equal_expected_shape = result.sizes().equals(input.sizes()); |
| bool is_batched_column_major = false; |
| if (result.dim() >= 2) { |
| is_batched_column_major = result.mT().is_contiguous(); |
| } |
| |
| // if result is not empty and not in batched column major format |
| bool copy_needed = (result.numel() != 0 && !is_batched_column_major); |
| copy_needed |= !result_input_same_type; // or result does not have the same dtype as input |
| copy_needed |= (result.numel() != 0 && !result_equal_expected_shape); // or result does not have the expected shape |
| // we have to allocate a temporary tensor |
| if (copy_needed) { |
| Tensor result_tmp = at::empty({0}, input.options()); |
| result_tmp = cholesky_inverse_out_info(result_tmp, infos, input, upper); |
| at::native::resize_output(result, result_tmp.sizes()); |
| result.copy_(result_tmp); |
| } else { |
| // use result's memory directly |
| result = cholesky_inverse_out_info(result, infos, input, upper); |
| } |
| |
| // Now check LAPACK/MAGMA error codes |
| at::_linalg_check_errors(infos, "cholesky_inverse", result.dim() == 2); |
| return result; |
| } |
| |
| Tensor cholesky_inverse(const Tensor &input, bool upper) { |
| Tensor result = at::empty({0}, input.options()); |
| result = at::cholesky_inverse_out(result, input, upper); |
| return result; |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ linalg.solve ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| // Auxiliary function that returns the LU decomposition to use it in the backward |
| TORCH_IMPL_FUNC(_linalg_solve_ex_out)(const Tensor& A, |
| const Tensor& B, |
| bool left, |
| bool check_errors, |
| const Tensor& result, |
| const Tensor& LU, |
| const Tensor& pivots, |
| const Tensor& info) { |
| // Possible optimization: Compute the LU factorization of A^T if A is contiguous |
| // Then we solve A^T X = B with adjoint=True |
| // This saves a copy as A doesn't need to be copied into an F-contig matrix in lu_factor |
| // This optimization makes functorch's batching rule difficult. See NOTE [ solve_ex Batch Rule Contiguity ] |
| const bool use_A_T = A.is_contiguous() && !A.is_complex(); |
| at::linalg_lu_factor_ex_out(const_cast<Tensor&>(LU), |
| const_cast<Tensor&>(pivots), |
| const_cast<Tensor&>(info), |
| use_A_T ? A.mT() : A); |
| if (check_errors) { |
| at::_linalg_check_errors(info, "torch.linalg.solve_ex", A.dim() == 2); |
| } |
| |
| // [numpy-compat] Handle vectors on the rhs |
| const bool vector_case = at::native::linalg_solve_is_vector_rhs(LU, B); |
| auto result_ = vector_case ? result.unsqueeze(-1) : result; |
| auto B_ = vector_case ? B.unsqueeze(-1) : B; |
| at::linalg_lu_solve_out(result_, LU, pivots, B_, left, /*adjoint*/use_A_T); |
| } |
| |
| std::tuple<Tensor&, Tensor&> linalg_solve_ex_out(const Tensor& A, |
| const Tensor& B, |
| bool left, |
| bool check_errors, |
| Tensor& result, |
| Tensor& info) { |
| auto LU = B.new_empty({0}); |
| auto pivots = B.new_empty({0}, kInt); |
| at::_linalg_solve_ex_out(result, LU, pivots, info, A, B, left, check_errors); |
| return std::tie(result, info); |
| } |
| |
| // We implement linalg_solve_ex as a composite function of _linalg_solve |
| std::tuple<Tensor, Tensor> linalg_solve_ex(const Tensor& A, |
| const Tensor& B, |
| bool left, |
| bool check_errors) { |
| Tensor result, LU, pivots, info; |
| std::tie(result, LU, pivots, info) = at::_linalg_solve_ex(A, B, left, check_errors); |
| return std::make_tuple(std::move(result), std::move(info)); |
| } |
| |
| Tensor& linalg_solve_out(const Tensor& A, |
| const Tensor& B, |
| bool left, |
| Tensor& result) { |
| auto info = B.new_empty({0}, kInt); |
| at::linalg_solve_ex_out(result, info, A, B, left); |
| at::_linalg_check_errors(info, "torch.linalg.solve", A.dim() == 2); |
| return result; |
| } |
| |
| Tensor linalg_solve(const Tensor& A, |
| const Tensor& B, |
| bool left) { |
| Tensor result, info; |
| std::tie(result, info) = at::linalg_solve_ex(A, B, left); |
| at::_linalg_check_errors(info, "torch.linalg.solve", A.dim() == 2); |
| return result; |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ lu_factor ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| DEFINE_DISPATCH(lu_factor_stub); |
| |
| TORCH_IMPL_FUNC(linalg_lu_factor_ex_out)(const Tensor& A, |
| bool pivot, |
| bool check_errors, |
| const Tensor& LU, |
| const Tensor& pivots, |
| const Tensor& info) { |
| if (A.numel() == 0) { |
| // zero out the infos as it will have one element if the input is a matrix of size (0, 0) |
| info.zero_(); |
| return; |
| } |
| if (!LU.is_same(A)) { |
| LU.copy_(A); |
| } |
| |
| lu_factor_stub(A.device().type(), LU, pivots, info, pivot); |
| |
| if (check_errors) { |
| at::_linalg_check_errors(info, "torch.linalg.lu_factor_ex", A.dim() == 2); |
| } |
| } |
| |
| std::tuple<Tensor&, Tensor&> linalg_lu_factor_out(const Tensor& A, bool pivot, Tensor& LU, Tensor& pivots) { |
| auto info = at::empty({0}, A.options().dtype(kInt)); |
| // We pass check_errors as we want to use lu_factor rather than lu_factor_ex in the errors |
| at::linalg_lu_factor_ex_out(LU, pivots, info, A, pivot, /*check_errors=*/false); |
| at::_linalg_check_errors(info, "torch.linalg.lu_factor", A.dim() == 2); |
| return std::tie(LU, pivots); |
| } |
| |
| std::tuple<Tensor, Tensor> linalg_lu_factor(const Tensor& A, bool pivot) { |
| Tensor LU, pivots, info; |
| std::tie(LU, pivots, info) = at::linalg_lu_factor_ex(A, pivot, /*check_errors=*/false); |
| at::_linalg_check_errors(info, "torch.linalg.lu_factor", A.dim() == 2); |
| return std::make_tuple(std::move(LU), std::move(pivots)); |
| } |
| |
| // TODO Deprecate this function in favour of linalg_lu_factor_ex |
| std::tuple<Tensor, Tensor, Tensor> _lu_with_info(const Tensor& self, bool compute_pivots, bool) { |
| TORCH_WARN_ONCE( |
| "torch.lu is deprecated in favor of torch.linalg.lu_factor / torch.linalg.lu_factor_ex and will be ", |
| "removed in a future PyTorch release.\n", |
| "LU, pivots = torch.lu(A, compute_pivots)\n", |
| "should be replaced with\n", |
| "LU, pivots = torch.linalg.lu_factor(A, compute_pivots)\n", |
| "and\n", |
| "LU, pivots, info = torch.lu(A, compute_pivots, get_infos=True)\n", |
| "should be replaced with\n", |
| "LU, pivots, info = torch.linalg.lu_factor_ex(A, compute_pivots)" |
| ); |
| return at::linalg_lu_factor_ex(self, compute_pivots, false); |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ linalg_lu ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| DEFINE_DISPATCH(unpack_pivots_stub); |
| |
| TORCH_IMPL_FUNC(linalg_lu_out)(const Tensor& A, |
| bool pivot, |
| const Tensor& P, |
| const Tensor& L, |
| const Tensor& U) { |
| const auto m = A.sizes().end()[-2]; |
| const auto n = A.sizes().end()[-1]; |
| |
| // A.shape[-2:] == (m, n) |
| // P.shape[-2:] == (m, m) |
| // L.shape[-2:] == (m, k) |
| // U.shape[-2:] == (k, n) |
| // with k = min(m, n) |
| |
| // Use L as it has the correct size |
| const bool use_L = m > n; |
| auto pivots = at::empty({0}, A.options().dtype(kInt)); |
| auto info = at::empty({0}, A.options().dtype(kInt)); |
| at::linalg_lu_factor_ex_out(const_cast<Tensor&>(use_L ? L : U), |
| const_cast<Tensor&>(pivots), |
| const_cast<Tensor&>(info), |
| A, |
| pivot, |
| /*check_errors=*/false); |
| at::lu_unpack_out(const_cast<Tensor&>(P), |
| const_cast<Tensor&>(L), |
| const_cast<Tensor&>(U), |
| use_L ? L : U, |
| pivots, |
| /*unpack_lu=*/true, |
| /*unpack_pivots=*/pivot); |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ lu_unpack ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| TORCH_IMPL_FUNC(lu_unpack_out)(const Tensor& LU, |
| const Tensor& pivots, |
| bool unpack_lu, |
| bool unpack_pivots, |
| const Tensor& P, |
| const Tensor& L, |
| const Tensor& U) { |
| const auto m = LU.sizes().end()[-2]; |
| const auto n = LU.sizes().end()[-1]; |
| |
| // A.shape[-2:] == (m, n) |
| // P.shape[-2:] == (m, m) |
| // L.shape[-2:] == (m, k) |
| // U.shape[-2:] == (k, n) |
| // with k = min(m, n) |
| |
| if (unpack_lu) { |
| if (m > n || LU.is_same(L)) { |
| // The order of triu and tril is important as we may have LU.is_same(L) |
| at::triu_out(const_cast<Tensor&>(U), m == n ? LU : LU.narrow(-2, 0, n), 0); |
| at::tril_out(const_cast<Tensor&>(L), LU, -1); |
| L.diagonal(0, -2, -1).fill_(1.); |
| } else { |
| // The order of triu and tril is important as we may have LU.is_same(U) |
| at::tril_out(const_cast<Tensor&>(L), m == n ? LU : LU.narrow(-1, 0, m), -1); |
| L.diagonal(0, -2, -1).fill_(1.); |
| at::triu_out(const_cast<Tensor&>(U), LU, 0); |
| } |
| } |
| if (unpack_pivots) { |
| // lu_factor_ex returns an int32 1-based indexing, which is what we have in `pivots` |
| // We transform that to a proper permutation of the indices {0, ..., m-1} |
| const auto perm_sizes = IntArrayRef(P.sizes().data(), P.dim() - 1); |
| |
| // Fill `perm` with the identity permutation (perhaps batched) |
| const auto perm = at::arange(m, pivots.options().memory_format(at::MemoryFormat::Contiguous).dtype(kLong)) |
| .expand(perm_sizes) |
| .contiguous(); |
| |
| // Note that perm is of type kLong and pivots is a 1-indexed kInt. |
| // This is taken into account in the unpack_pivots kernel |
| auto iter = TensorIteratorConfig() |
| .set_check_mem_overlap(false) |
| .check_all_same_dtype(false) |
| .resize_outputs(false) |
| .declare_static_shape(pivots.sizes(), /*squash_dim=*/pivots.dim() - 1) |
| .add_output(perm) |
| .add_owned_input(pivots.contiguous()) |
| .build(); |
| |
| unpack_pivots_stub(pivots.device().type(), iter, std::min(m, n), m); |
| |
| // Transform the permutation into a permutation matrix |
| P.zero_(); |
| P.scatter_(-2, perm.unsqueeze(-2), 1.); |
| } |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ linalg_lu_solve ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| DEFINE_DISPATCH(lu_solve_stub); |
| |
| TORCH_IMPL_FUNC(linalg_lu_solve_out)(const Tensor& LU, |
| const Tensor& pivots, |
| const Tensor& B, |
| bool left, |
| bool adjoint, |
| const Tensor& result) { |
| // Trivial case |
| if (result.numel() == 0) { |
| return; |
| } |
| |
| // Solve A^H X = B^H. Then we return X^H |
| if (!left) { |
| adjoint = !adjoint; |
| result.transpose_(-2, -1); |
| } |
| |
| // Copy B (or B^H) into result |
| if (!result.is_same(B)) { |
| result.copy_(left ? B : B.mH()); |
| } |
| |
| // Make LU / pivots F-contiguous |
| auto pivots_ = pivots.expect_contiguous(); |
| auto LU_ = at::native::borrow_else_clone( |
| LU.mT().is_contiguous(), LU, LU, /*row_major=*/false); |
| |
| const auto trans = !adjoint ? TransposeType::NoTranspose : |
| LU.is_complex() ? TransposeType::ConjTranspose |
| : TransposeType::Transpose; |
| |
| lu_solve_stub(LU_->device().type(), *LU_, *pivots_, result, trans); |
| |
| // Conj-transpose back in-place |
| if (!left) { |
| result.transpose_(-2, -1); |
| if (result.is_complex()) { |
| result._set_conj(!result.is_conj()); |
| } |
| } |
| } |
| |
| Tensor lu_solve(const Tensor& self, const Tensor& LU_data, const Tensor& LU_pivots) { |
| TORCH_WARN_ONCE( |
| "torch.lu_solve is deprecated in favor of torch.linalg.lu_solve", |
| "and will be removed in a future PyTorch release.\n", |
| "Note that torch.linalg.lu_solve has its arguments reversed.\n", |
| "X = torch.lu_solve(B, LU, pivots)\n", |
| "should be replaced with\n", |
| "X = torch.linalg.lu_solve(LU, pivots, B)" |
| ); |
| return at::linalg_lu_solve(LU_data, LU_pivots, self); |
| } |
| |
| Tensor& lu_solve_out(const Tensor& self, const Tensor& LU_data, const Tensor& LU_pivots, Tensor& result) { |
| TORCH_WARN_ONCE( |
| "torch.lu_solve is deprecated in favor of torch.linalg.lu_solve", |
| "and will be removed in a future PyTorch release.\n", |
| "Note that torch.linalg.lu_solve has its arguments reversed.\n", |
| "X = torch.lu_solve(B, LU, pivots)\n", |
| "should be replaced with\n", |
| "X = torch.linalg.lu_solve(LU, pivots, B)" |
| ); |
| return at::linalg_lu_solve_out(result, LU_data, LU_pivots, self); |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ triangular_solve ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| DEFINE_DISPATCH(triangular_solve_stub); |
| |
| /* |
| Solves the matrix equation 'input' @ 'result' = 'other' for the 'result'. |
| The result of the computation is saved in-place in 'result' tensor, |
| 'clone_input' will be a copy of 'input', |
| 'infos' is used to store information for possible checks for error, |
| 'upper' controls the portion of input matrix to consider in computations, |
| 'transpose' if true then 'input.mT()' @ 'result' = 'other' is solved, |
| 'unitriangular' if true then the diagonal elements of 'input' are assumed to be 1 |
| and the actual diagonal values are not used. |
| */ |
| static void triangular_solve_out_impl( |
| const Tensor& result, |
| const Tensor& clone_input, |
| const Tensor& input, |
| const Tensor& other, |
| bool upper, bool transpose, bool unitriangular) { |
| TORCH_WARN_ONCE( |
| "torch.triangular_solve is deprecated in favor of torch.linalg.solve_triangular", |
| "and will be removed in a future PyTorch release.\n", |
| "torch.linalg.solve_triangular has its arguments reversed and does not return a copy of one of the inputs.\n", |
| "X = torch.triangular_solve(B, A).solution\n", |
| "should be replaced with\n", |
| "X = torch.linalg.solve_triangular(A, B)."); |
| // These internal asserts make explicit the assumptions in the implementation |
| // Error check with the actual error messages are done on the higher level of |
| // the hierarchy of calls |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.dim() >= 2); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.size(-2) == input.size(-1)); |
| |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.device() == other.device()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.device() == result.device()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.device() == clone_input.device()); |
| |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.scalar_type() == other.scalar_type()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.scalar_type() == result.scalar_type()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.scalar_type() == clone_input.scalar_type()); |
| |
| // if 'result' has no elements we can modify it |
| if (result.numel() == 0) { |
| result.resize_(other.mT().sizes(), MemoryFormat::Contiguous); |
| result.transpose_(-2, -1); // make 'result' to have Fortran contiguous memory layout |
| } |
| |
| // if 'clone_input' has no elements we can modify it |
| if (clone_input.numel() == 0) { |
| clone_input.resize_(input.mT().sizes(), MemoryFormat::Contiguous); |
| clone_input.transpose_(-2, -1); // make 'clone_input' to have Fortran contiguous memory layout |
| } |
| |
| // 'result' and 'clone_input' must be in batched column major order (Fortran contiguous) |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(result.mT().is_contiguous()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(clone_input.mT().is_contiguous()); |
| |
| // triangular_solve_stub performs calculations in-place |
| // 'result' must be a copy of 'other' |
| // 'clone_input' must be a copy of 'input' |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(result.sizes().equals(other.sizes())); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(clone_input.sizes().equals(input.sizes())); |
| result.copy_(other); |
| clone_input.copy_(input); |
| |
| triangular_solve_stub(input.device().type(), clone_input, result, /*left=*/true, upper, transpose ? TransposeType::Transpose : TransposeType::NoTranspose, unitriangular); |
| } |
| |
| TORCH_IMPL_FUNC(triangular_solve_out)(const Tensor& self, const Tensor& A, bool upper, bool transpose, bool unitriangular, const Tensor& result, const Tensor& clone_A) { |
| Tensor self_broadcast, A_broadcast; |
| std::tie(self_broadcast, A_broadcast) = _linalg_broadcast_batch_dims(self, A, "triangular_solve"); |
| |
| bool copy_needed = !result.transpose(-2, -1).is_contiguous(); |
| copy_needed |= !clone_A.transpose(-2, -1).is_contiguous(); |
| |
| if (copy_needed) { |
| Tensor result_tmp = at::empty({0}, self.options()); |
| Tensor clone_A_tmp = at::empty({0}, A.options()); |
| |
| triangular_solve_out_impl(result_tmp, clone_A_tmp, A_broadcast, self_broadcast, upper, transpose, unitriangular); |
| |
| result.copy_(result_tmp); |
| clone_A.copy_(clone_A_tmp); |
| } else { |
| triangular_solve_out_impl(result, clone_A, A_broadcast, self_broadcast, upper, transpose, unitriangular); |
| } |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ qr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| DEFINE_DISPATCH(geqrf_stub); |
| |
| static void geqrf_out_helper(const Tensor& input, const Tensor& QR, const Tensor& tau) { |
| TORCH_INTERNAL_ASSERT(input.dim() >= 2); |
| |
| TORCH_INTERNAL_ASSERT(input.scalar_type() == QR.scalar_type()); |
| TORCH_INTERNAL_ASSERT(input.device() == QR.device()); |
| |
| TORCH_INTERNAL_ASSERT(input.scalar_type() == tau.scalar_type()); |
| TORCH_INTERNAL_ASSERT(input.device() == tau.device()); |
| |
| // if 'QR' has no elements we can modify it |
| if (QR.numel() == 0) { |
| QR.resize_as_(input.mT(), MemoryFormat::Contiguous); |
| QR.transpose_(-2, -1); // make Fortran-contiguous |
| } |
| |
| auto expected_batch_tau_shape = IntArrayRef(input.sizes().data(), input.dim() - 2).vec(); // input.shape[:-2] |
| expected_batch_tau_shape.push_back(std::min(input.size(-2), input.size(-1))); |
| if (tau.numel() == 0) { |
| tau.resize_(expected_batch_tau_shape); |
| } |
| |
| // QR tensor must be in batched column major order (Fortran contiguous) |
| TORCH_INTERNAL_ASSERT(QR.mT().is_contiguous()); |
| TORCH_INTERNAL_ASSERT(QR.sizes().equals(input.sizes())); |
| |
| // tau tensor must be contiguous |
| TORCH_INTERNAL_ASSERT(tau.is_contiguous()); |
| TORCH_INTERNAL_ASSERT(tau.sizes().equals(expected_batch_tau_shape)); |
| |
| // geqrf_stub (apply_geqrf) performs calculations in-place and 'QR' must be a copy of input |
| QR.copy_(input); |
| geqrf_stub(input.device().type(), QR, tau); |
| } |
| |
| std::tuple<Tensor&, Tensor&> geqrf_out(const Tensor& input, Tensor& QR, Tensor& tau) { |
| TORCH_CHECK(input.dim() >= 2, "torch.geqrf: input must have at least 2 dimensions."); |
| |
| checkSameDevice("torch.geqrf", QR, input, "a"); // 'a' is used in documentation and native_functions.yml |
| checkSameDevice("torch.geqrf", tau, input, "tau"); |
| checkLinalgCompatibleDtype("torch.geqrf", QR, input, "a"); |
| checkLinalgCompatibleDtype("torch.geqrf", tau, input, "tau"); |
| |
| bool QR_input_same_type = (QR.scalar_type() == input.scalar_type()); |
| bool tau_input_same_type = (tau.scalar_type() == input.scalar_type()); |
| bool QR_equal_expected_shape = QR.sizes().equals(input.sizes()); |
| |
| auto expected_batch_tau_shape = IntArrayRef(input.sizes().data(), input.dim() - 2).vec(); // input.shape[:-2] |
| expected_batch_tau_shape.push_back(std::min(input.size(-2), input.size(-1))); |
| bool tau_equal_expected_shape = tau.sizes().equals(expected_batch_tau_shape); |
| |
| bool is_batched_column_major = false; |
| if (QR.dim() >= 2) { |
| is_batched_column_major = QR.mT().is_contiguous(); |
| } |
| |
| // if 'QR' is not empty and not in batched column major format |
| bool copy_needed = (QR.numel() != 0 && !is_batched_column_major); |
| copy_needed |= (QR.numel() != 0 && !QR_equal_expected_shape); // or 'QR' does not have the expected shape |
| copy_needed |= !QR_input_same_type; // or 'QR' does not have the same dtype as input |
| // we have to allocate a temporary tensor |
| |
| copy_needed |= (tau.numel() != 0 && !tau.is_contiguous()); |
| copy_needed |= (tau.numel() != 0 && !tau_equal_expected_shape); // or 'tau' does not have the expected shape |
| copy_needed |= !tau_input_same_type; // or 'tau' does not have the same dtype as input |
| |
| if (copy_needed) { |
| Tensor QR_tmp = at::empty({0}, input.options()); |
| Tensor tau_tmp = at::empty({0}, input.options()); |
| |
| geqrf_out_helper(input, QR_tmp, tau_tmp); |
| |
| at::native::resize_output(QR, QR_tmp.sizes()); |
| QR.copy_(QR_tmp); |
| at::native::resize_output(tau, tau_tmp.sizes()); |
| tau.copy_(tau_tmp); |
| } else { |
| // use "out" tensors' storage directly |
| geqrf_out_helper(input, QR, tau); |
| } |
| |
| return std::tuple<Tensor&, Tensor&>(QR, tau); |
| } |
| |
| std::tuple<Tensor, Tensor> geqrf(const Tensor& input) { |
| Tensor QR = at::empty({0}, input.options()); |
| Tensor tau = at::empty({0}, input.options()); |
| std::tie(QR, tau) = at::geqrf_outf(input, QR, tau); |
| return std::make_tuple(std::move(QR), std::move(tau)); |
| } |
| |
| /* |
| Computes the QR decomposition using GEQRF and ORGQR operations. |
| This is an in-place function and Q, R tensors must have correct shape and be Fortran contiguous. |
| |
| Args: |
| * `input` - [in] Input tensor for QR decomposition |
| * `Q` - [out] Tensor containing the Q matrices of QR decomposition |
| * `R` - [out] Tensor containing the R matrices of QR decomposition |
| * `compute_q` - controls whether the Q tensor is computed |
| * `reduced_mode` - controls the size of Q and R tensors |
| |
| For further details, please see the LAPACK documentation for GEQRF and ORGQR. |
| */ |
| TORCH_IMPL_FUNC(linalg_qr_out)(const Tensor& A, |
| c10::string_view mode, |
| const Tensor & Q, |
| const Tensor & R) { |
| auto m = A.size(-2); |
| auto n = A.size(-1); |
| auto k = std::min(m, n); |
| bool compute_q, reduced_mode; |
| std::tie(compute_q, reduced_mode) = at::native::_parse_qr_mode(mode); |
| |
| |
| // We need an auxiliary tensor to call geqrf |
| auto tau_shape = A.sizes().vec(); |
| tau_shape.pop_back(); |
| tau_shape.back() = k; |
| auto tau = A.new_empty(tau_shape); |
| |
| // geqrf requires m x n workspace input that is modified in-place |
| // We try to use Q. If it doesn't fit, we try to use R |
| // If m > n and compute_q==false, it won't fit into Q or R, so we neet to create an auxiliary tensor |
| Tensor QR; |
| if (compute_q && Q.size(-1) == n) { |
| QR = Q; |
| QR.copy_(A); |
| } else if (R.size(-2) == m) { |
| QR = R; |
| QR.copy_(A); |
| } else { |
| QR = cloneBatchedColumnMajor(A); |
| } |
| |
| geqrf_stub(A.device().type(), QR, tau); |
| |
| // Split QR into Q (unless compute_q == false) and R |
| if (QR.is_alias_of(R)) { |
| // Copy QR into Q |
| if (compute_q) { |
| // If the result didn't fit in Q and compute_q == true is because Q is not of size m x n (i.e. it's of size m x m) |
| TORCH_INTERNAL_ASSERT(Q.size(-1) == m); |
| if (m < n) { |
| Q.copy_(QR.slice(-1, 0, m)); |
| } else { |
| Q.slice(-1, 0, n).copy_(QR); |
| } |
| } |
| R.triu_(); |
| } else { |
| // Copy QR into R from Q or the aux tensor |
| at::triu_out(const_cast<Tensor&>(R), QR.slice(-2, 0, n)); |
| } |
| |
| if (compute_q) { |
| // Next perform ORGQR for Q using the result from GEQRF |
| orgqr_stub(A.device().type(), const_cast<Tensor&>(Q), tau); |
| } |
| } |
| |
| |
| std::tuple<Tensor,Tensor> qr(const Tensor& self, bool some) { |
| TORCH_WARN_ONCE( |
| "torch.qr is deprecated in favor of torch.linalg.qr and will be removed in a future PyTorch release.\n", |
| "The boolean parameter 'some' has been replaced with a string parameter 'mode'.\n", |
| "Q, R = torch.qr(A, some)\n", |
| "should be replaced with\n", |
| "Q, R = torch.linalg.qr(A, 'reduced' if some else 'complete')" |
| ); |
| const char* mode = some ? "reduced" : "complete"; |
| return at::linalg_qr(self, mode); |
| } |
| |
| std::tuple<Tensor&,Tensor&> qr_out(const Tensor& self, bool some, Tensor& Q, Tensor& R) { |
| TORCH_WARN_ONCE( |
| "torch.qr is deprecated in favor of torch.linalg.qr and will be removed in a future PyTorch release.\n", |
| "The boolean parameter 'some' has been replaced with a string parameter 'mode'.\n", |
| "Q, R = torch.qr(A, some)\n", |
| "should be replaced with\n", |
| "Q, R = torch.linalg.qr(A, 'reduced' if some else 'complete')" |
| ); |
| const char* mode = some ? "reduced" : "complete"; |
| return at::linalg_qr_out(Q, R, self, mode); |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ orgqr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| DEFINE_DISPATCH(orgqr_stub); |
| |
| /* |
| The householder_product (orgqr) function allows reconstruction of an orthogonal (or unitary) matrix Q, |
| from a sequence of elementary reflectors, such as is produced by the geqrf function. |
| |
| Args: |
| * `input` - Tensor with the directions of the elementary reflectors below the diagonal. |
| * `tau` - Tensor containing the magnitudes of the elementary reflectors. |
| * `result` - result Tensor, which will contain the orthogonal (or unitary) matrix Q. |
| |
| For further details, please see the LAPACK/MAGMA documentation. |
| */ |
| Tensor& householder_product_out_helper(const Tensor& input, const Tensor& tau, Tensor& result) { |
| TORCH_INTERNAL_ASSERT(input.dim() >= 2); |
| TORCH_INTERNAL_ASSERT(input.size(-2) >= input.size(-1)); |
| TORCH_INTERNAL_ASSERT(input.size(-1) >= tau.size(-1)); |
| |
| TORCH_INTERNAL_ASSERT(input.scalar_type() == tau.scalar_type()); |
| TORCH_INTERNAL_ASSERT(input.device() == tau.device()); |
| |
| TORCH_INTERNAL_ASSERT(result.scalar_type() == input.scalar_type()); |
| TORCH_INTERNAL_ASSERT(result.device() == input.device()); |
| |
| // if result has no elements we can modify it |
| if (result.numel() == 0) { |
| at::native::resize_as_(result, input.mT(), MemoryFormat::Contiguous); |
| result.transpose_(-2, -1); |
| } |
| |
| // result tensor must be in batched column major order (Fortran contiguous) |
| TORCH_INTERNAL_ASSERT(result.mT().is_contiguous()); |
| TORCH_INTERNAL_ASSERT(result.sizes().equals(input.sizes())); |
| |
| // tau tensor must be contiguous |
| Tensor tau_ = tau; |
| if (!tau.is_contiguous()) { |
| tau_ = at::empty(tau.sizes(), tau.options(), MemoryFormat::Contiguous); |
| tau_.copy_(tau); |
| } |
| |
| // orgqr_stub (apply_orgqr) performs calculations in-place and result must be a copy of input |
| result.copy_(input); |
| |
| result = orgqr_stub(result.device().type(), result, tau_); |
| return result; |
| } |
| |
| Tensor& linalg_householder_product_out(const Tensor& input, const Tensor& tau, Tensor& result) { |
| TORCH_CHECK(input.dim() >= 2, "torch.linalg.householder_product: input must have at least 2 dimensions."); |
| TORCH_CHECK( |
| input.size(-2) >= input.size(-1), |
| "torch.linalg.householder_product: input.shape[-2] must be greater than or equal to input.shape[-1]"); |
| TORCH_CHECK( |
| input.size(-1) >= tau.size(-1), |
| "torch.linalg.householder_product: input.shape[-1] must be greater than or equal to tau.shape[-1]"); |
| |
| TORCH_CHECK( |
| input.dim() - tau.dim() == 1, |
| "torch.linalg.householder_product: Expected tau to have one dimension less than input, but got tau.ndim equal to ", |
| tau.dim(), |
| " and input.ndim is equal to ", |
| input.dim()); |
| if (input.dim() > 2) { |
| auto expected_batch_tau_shape = IntArrayRef(input.sizes().data(), input.dim() - 2); // input.shape[:-2] |
| auto actual_batch_tau_shape = IntArrayRef(tau.sizes().data(), tau.dim() - 1); // tau.shape[:-1] |
| TORCH_CHECK( |
| actual_batch_tau_shape.equals(expected_batch_tau_shape), |
| "torch.linalg.householder_product: Expected batch dimensions of tau to be equal to input.shape[:-2], but got ", |
| actual_batch_tau_shape); |
| } |
| |
| TORCH_CHECK( |
| tau.scalar_type() == input.scalar_type(), |
| "torch.linalg.householder_product: tau dtype ", |
| tau.scalar_type(), |
| " does not match input dtype ", |
| input.scalar_type()); |
| checkSameDevice("torch.linalg.householder_product", tau, input, "tau"); |
| checkSameDevice("torch.linalg.householder_product", result, input); |
| checkLinalgCompatibleDtype("torch.linalg.householder_product", result, input); |
| |
| // TODO: uncomment the following when passing incorrectly sized 'result' is not allowed |
| // if (result.numel() != 0) { |
| // // Resize messes up the strides, so let's not use at::native::resize_output |
| // TORCH_CHECK(result.sizes().equals(input.sizes()), |
| // "result shape ", result.sizes(), " does not match input shape ", input.sizes()); |
| // } |
| |
| bool result_input_same_type = (result.scalar_type() == input.scalar_type()); |
| bool result_equal_expected_shape = result.sizes().equals(input.sizes()); |
| bool is_batched_column_major = false; |
| if (result.dim() >= 2) { |
| is_batched_column_major = result.mT().is_contiguous(); |
| } |
| |
| // if result is not empty and not in batched column major format |
| bool copy_needed = (result.numel() != 0 && !is_batched_column_major); |
| copy_needed |= !result_input_same_type; // or result does not have the same dtype as input |
| copy_needed |= (result.numel() != 0 && !result_equal_expected_shape); // or result does not have the expected shape |
| // we have to allocate a temporary tensor |
| if (copy_needed) { |
| Tensor result_tmp = at::empty({0}, input.options()); |
| result_tmp = householder_product_out_helper(input, tau, result_tmp); |
| at::native::resize_output(result, result_tmp.sizes()); |
| result.copy_(result_tmp); |
| } else { |
| // use result's storage directly |
| result = householder_product_out_helper(input, tau, result); |
| } |
| |
| return result; |
| } |
| |
| Tensor linalg_householder_product(const Tensor& input, const Tensor& tau) { |
| Tensor result = at::empty({0}, input.options()); |
| result = at::linalg_householder_product_outf(input, tau, result); |
| return result; |
| } |
| |
| // torch.orgqr is an alias of torch.linalg.householder_product |
| // torch.linalg.householder_product is the preferred new function |
| Tensor& orgqr_out(const Tensor& input, const Tensor& tau, Tensor& result) { |
| return at::linalg_householder_product_outf(input, tau, result); |
| } |
| |
| Tensor orgqr(const Tensor& input, const Tensor& tau) { |
| return at::linalg_householder_product(input, tau); |
| } |
| |
| DEFINE_DISPATCH(ormqr_stub); |
| |
| void ormqr_out_helper(const Tensor& input, const Tensor& tau, const Tensor& other, const Tensor& result, bool left, bool transpose) { |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.dim() >= 2); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(other.dim() >= 2); |
| |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(other.size(left ? -2 : -1) >= tau.size(-1)); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(other.size(left ? -2 : -1) == input.size(-2)); |
| |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.scalar_type() == tau.scalar_type()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.device() == tau.device()); |
| |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.scalar_type() == other.scalar_type()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.device() == other.device()); |
| |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(result.scalar_type() == input.scalar_type()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(result.device() == input.device()); |
| |
| // if 'result' has no elements we can modify it |
| if (result.numel() == 0) { |
| at::native::resize_as_(result, other.mT(), MemoryFormat::Contiguous); |
| result.transpose_(-2, -1); |
| } |
| |
| // 'result' tensor must be in batched column major order (Fortran contiguous) |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(result.mT().is_contiguous()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(result.sizes().equals(other.sizes())); |
| |
| // 'tau' tensor must be contiguous |
| Tensor tau_ = tau; |
| if (!tau.is_contiguous()) { |
| tau_ = at::empty(tau.sizes(), tau.options(), MemoryFormat::Contiguous); |
| tau_.copy_(tau); |
| } |
| |
| // 'input' tensor must be Fortran contiguous |
| Tensor input_ = input; |
| if (!input.mT().is_contiguous()) { |
| input_ = at::empty(input.mT().sizes(), input.options(), MemoryFormat::Contiguous); |
| input_.transpose_(-2, -1); |
| input_.copy_(input); |
| } |
| |
| // ormqr_stub (apply_ormqr) performs calculations in-place and 'result' must be a copy of 'other' |
| result.copy_(other); |
| |
| ormqr_stub(result.device().type(), input_, tau_, result, left, transpose); |
| } |
| |
| Tensor& ormqr_out(const Tensor& input, const Tensor& tau, const Tensor& other, bool left, bool transpose, Tensor& result) { |
| TORCH_CHECK(input.dim() >= 2, "torch.ormqr: input must have at least 2 dimensions."); |
| TORCH_CHECK(other.dim() >= 2, "torch.ormqr: other must have at least 2 dimensions."); |
| |
| int64_t left_size_condition = left ? -2 : -1; |
| TORCH_CHECK( |
| other.size(left_size_condition) >= tau.size(-1), |
| "torch.ormqr: other.shape[", |
| left_size_condition, |
| "] must be greater than or equal to tau.shape[-1]"); |
| |
| TORCH_CHECK( |
| other.size(left_size_condition) == input.size(-2), |
| "torch.ormqr: other.shape[", |
| left_size_condition, |
| "] must be equal to input.shape[-2]"); |
| |
| TORCH_CHECK( |
| tau.size(-1) <= input.size(-1), |
| "torch.ormqr: tau.shape[-1] must be less than or equal to input.shape[-1]"); |
| |
| TORCH_CHECK( |
| input.dim() - tau.dim() == 1, |
| "torch.ormqr: ", |
| "Expected tau to have one dimension less than input, but got tau.ndim equal to ", |
| tau.dim(), |
| " and input.ndim is equal to ", |
| input.dim()); |
| TORCH_CHECK( |
| input.dim() == other.dim(), |
| "torch.ormqr: ", |
| "Expected other to have the same number of dimensions as input, but got other.ndim equal to ", |
| other.dim(), |
| " and input.ndim is equal to ", |
| input.dim()); |
| |
| if (input.dim() > 2) { |
| auto expected_batch_shape = IntArrayRef(input.sizes().data(), input.dim() - 2); // input.shape[:-2] |
| auto actual_batch_tau_shape = IntArrayRef(tau.sizes().data(), tau.dim() - 1); // tau.shape[:-1] |
| TORCH_CHECK( |
| actual_batch_tau_shape.equals(expected_batch_shape), |
| "torch.ormqr: Expected batch dimensions of tau to be equal to input.shape[:-2], but got ", |
| actual_batch_tau_shape); |
| |
| auto actual_batch_other_shape = IntArrayRef(other.sizes().data(), other.dim() - 2); // other.shape[:-2] |
| TORCH_CHECK( |
| actual_batch_other_shape.equals(expected_batch_shape), |
| "torch.ormqr: Expected batch dimensions of other to be equal to input.shape[:-2], but got ", |
| actual_batch_other_shape); |
| } |
| |
| TORCH_CHECK( |
| tau.scalar_type() == input.scalar_type(), |
| "torch.ormqr: Expected input and tau to have the same dtype, but input has dtype", input.scalar_type(), |
| " and tau has dtype ", tau.scalar_type()); |
| TORCH_CHECK( |
| other.scalar_type() == input.scalar_type(), |
| "torch.ormqr: Expected input and other to have the same dtype, but input has dtype", input.scalar_type(), |
| " and other has dtype ", other.scalar_type()); |
| TORCH_CHECK( |
| result.scalar_type() == input.scalar_type(), |
| "torch.ormqr: Expected input and result to have the same dtype, but input has dtype", input.scalar_type(), |
| " and result has dtype ", result.scalar_type()); |
| |
| checkSameDevice("torch.ormqr", tau, input, "tau"); |
| checkSameDevice("torch.ormqr", other, input, "other"); |
| checkSameDevice("torch.ormqr", result, input); |
| |
| bool result_equal_expected_shape = result.sizes().equals(other.sizes()); |
| bool is_batched_column_major = false; |
| if (result.dim() >= 2) { |
| is_batched_column_major = result.mT().is_contiguous(); |
| } |
| |
| // if result is not empty and not in batched column major format |
| bool copy_needed = (result.numel() != 0 && !is_batched_column_major); |
| copy_needed |= (result.numel() != 0 && !result_equal_expected_shape); // or result does not have the expected shape |
| // we have to allocate a temporary tensor |
| if (copy_needed) { |
| Tensor result_tmp = at::empty({0}, input.options()); |
| ormqr_out_helper(input, tau, other, result_tmp, left, transpose); |
| at::native::resize_output(result, result_tmp.sizes()); |
| result.copy_(result_tmp); |
| } else { |
| // use result's storage directly |
| ormqr_out_helper(input, tau, other, result, left, transpose); |
| } |
| |
| return result; |
| } |
| |
| Tensor ormqr(const Tensor& input, const Tensor& tau, const Tensor& other, bool left, bool transpose) { |
| Tensor result = at::empty({0}, input.options()); |
| result = at::native::ormqr_out(input, tau, other, left, transpose, result); |
| return result; |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ linalg_eigh ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| DEFINE_DISPATCH(linalg_eigh_stub); |
| |
| /* |
| Computes eigenvalues and eigenvectors of the tensor 'input'. |
| |
| Args: |
| * 'input' - input Tensor for eigendecomposition |
| * 'values' - Tensor to store computed eigenvalues |
| * 'vectors' - Tensor to store computed eigenvectors |
| * 'infos' - Tensor to store LAPACK/MAGMA/cuSOLVER error codes |
| * 'compute_eigenvectors' - controls whether eigenvectors should be computed |
| * 'uplo' - controls the portion of input matrix to consider in computations, allowed values are "u", "U", "l", "L" |
| "u", "U" - upper triangular portion of the input matrix is used in computations; "l", "L" - lower. |
| */ |
| |
| TORCH_IMPL_FUNC(_linalg_eigh_out)(const Tensor& A, |
| c10::string_view uplo, |
| bool compute_v, |
| const Tensor& L, |
| const Tensor& V) { |
| if (A.numel() == 0) { |
| return; |
| } |
| |
| auto uplo_uppercase = static_cast<char>(std::toupper(static_cast<unsigned char>(uplo[0]))); |
| bool upper = (uplo_uppercase == 'U'); |
| |
| Tensor V_ = V; |
| if (compute_v) { |
| V_.copy_(A); |
| } else { |
| // We need a tensor to hold A |
| V_ = cloneBatchedColumnMajor(A); |
| } |
| |
| const auto info = at::zeros(A.sizes().slice(0, A.dim() - 2), A.options().dtype(kInt)); |
| linalg_eigh_stub(A.device().type(), L, V_, info, upper, compute_v); |
| |
| at::_linalg_check_errors(info, "linalg.eigh", /*is_matrix*/A.dim() == 2); |
| } |
| |
| std::tuple<Tensor, Tensor> linalg_eigh(const Tensor& A, c10::string_view uplo) { |
| // TODO (Good intro task) Implement linalg_eigh_ex_out |
| return at::_linalg_eigh(A, uplo, /*compute_v*/true); |
| } |
| |
| std::tuple<Tensor&, Tensor&> linalg_eigh_out(const Tensor& A, c10::string_view uplo, Tensor& L, Tensor& V) { |
| return at::_linalg_eigh_out(L, V, A, uplo, /*compute_v=*/true); |
| } |
| |
| |
| Tensor linalg_eigvalsh(const Tensor& A, c10::string_view uplo) { |
| return std::get<0>(at::_linalg_eigh(A, uplo, |
| /*compute_v=*/_may_require_fw_or_bw_grad(A))); |
| } |
| |
| Tensor& linalg_eigvalsh_out(const Tensor& A, c10::string_view uplo, Tensor& L) { |
| auto V = at::empty({0}, A.options()); |
| at::_linalg_eigh_out(L, V, A, uplo, /*comptue_v=*/false); |
| return L; |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ linalg_eig ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| // This function returns complex-valued eigenvectors that is obtained from LAPACK GEEV's real-valued output |
| // This function is also used for the MAGMA path because intermediate MAGMA's results live on CPU |
| template <typename scalar_t> |
| static void linalg_eig_make_complex_eigenvectors_impl(Tensor& result, const Tensor& complex_values, const Tensor& real_vectors) { |
| // From GEEV documentation: |
| // Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first |
| // If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of VR. |
| // If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and v(j+1) = VR(:,j) - i*VR(:,j+1). |
| |
| auto batch_size = batchCount(real_vectors); |
| auto n = real_vectors.size(-1); |
| auto matrix_stride = matrixStride(real_vectors); |
| |
| auto result_data = result.data_ptr<c10::complex<scalar_t>>(); |
| auto real_vectors_data = real_vectors.data_ptr<scalar_t>(); |
| auto values_data = complex_values.data_ptr<c10::complex<scalar_t>>(); |
| |
| for (auto b = decltype(batch_size){0}; b < batch_size; b++) { |
| scalar_t* vecs = &real_vectors_data[b * matrix_stride]; |
| c10::complex<scalar_t>* res = &result_data[b * matrix_stride]; |
| c10::complex<scalar_t>* vals = &values_data[b * n]; |
| for (auto j = decltype(n){0}; j < n; j++) { |
| if (vals[j].imag() == 0.0) { // eigenvalue is real, then v(j) = VR(:,j) |
| for (auto i = decltype(n){0}; i < n; i++) { |
| res[j * n + i] = c10::complex<scalar_t>(vecs[j * n + i], 0); |
| } |
| } else { |
| for (auto i = decltype(n){0}; i < n; i++) { |
| res[j * n + i] = c10::complex<scalar_t>(vecs[j * n + i], vecs[(j+1) * n + i]); // v(j) = VR(:,j) + i*VR(:,j+1) |
| res[(j+1) * n + i] = c10::complex<scalar_t>(vecs[j * n + i], -vecs[(j+1) * n + i]); // v(j+1) = VR(:,j) - i*VR(:,j+1) |
| } |
| j++; |
| } |
| } |
| } |
| } |
| |
| static Tensor& linalg_eig_make_complex_eigenvectors(Tensor& complex_vectors, const Tensor& complex_values, const Tensor& real_vectors) { |
| // These asserts make explicit the requirements on tensors for 'linalg_eig_make_complex_eigenvectors_impl' |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(complex_vectors.device() == at::kCPU); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(complex_values.device() == at::kCPU); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(real_vectors.device() == at::kCPU); |
| |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(complex_vectors.is_complex()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(complex_values.is_complex()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(real_vectors.is_floating_point()); |
| |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(complex_vectors.mT().is_contiguous()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(complex_values.is_contiguous()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(real_vectors.mT().is_contiguous()); |
| |
| AT_DISPATCH_FLOATING_TYPES(real_vectors.scalar_type(), "linalg_eig_make_complex_vector", [&]{ |
| linalg_eig_make_complex_eigenvectors_impl<scalar_t>(complex_vectors, complex_values, real_vectors); |
| }); |
| return complex_vectors; |
| } |
| |
| DEFINE_DISPATCH(linalg_eig_stub); |
| |
| std::tuple<Tensor&, Tensor&> linalg_eig_out_info(const Tensor& input, Tensor& values, Tensor& vectors, Tensor& infos, bool compute_eigenvectors) { |
| // MAGMA doesn't have GPU interface for GEEV routine, it requires inputs to be on CPU |
| // therefore we create all intermediate tensors on CPU |
| auto options = input.options().device(at::kCPU); |
| |
| // These internal asserts make explicit the assumptions in the implementation |
| // Error check with the actual error messages are done on the higher level of the hierarchy of calls |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.dim() >= 2); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(input.size(-2) == input.size(-1)); |
| |
| // for real-valued 'input', eigenvalues can be real-valued or complex-valued |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY((toComplexType(input.scalar_type()) == values.scalar_type()) || (input.scalar_type() == values.scalar_type())); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(values.device() == at::kCPU); |
| |
| // for real-valued 'input', eigenvectors can be real-valued or complex-valued |
| if (compute_eigenvectors) { |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY((toComplexType(input.scalar_type()) == vectors.scalar_type()) || (input.scalar_type() == vectors.scalar_type())); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(vectors.device() == at::kCPU); |
| } |
| |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(infos.scalar_type() == at::kInt); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(infos.device() == at::kCPU); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(infos.numel() == std::max<int64_t>(1, batchCount(input))); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(infos.is_contiguous()); |
| |
| // if 'vectors' has no elements we can modify it |
| if (vectors.numel() == 0 && compute_eigenvectors) { |
| vectors.resize_(input.sizes(), MemoryFormat::Contiguous); |
| vectors.transpose_(-2, -1); // make 'vectors' to have Fortran contiguous memory layout |
| } |
| |
| // if 'values' has no elements we can modify it |
| auto values_shape = IntArrayRef(input.sizes().data(), input.dim()-1); // input.shape[:-1] |
| if (values.numel() == 0) { |
| values.resize_(values_shape, MemoryFormat::Contiguous); |
| } |
| |
| // 'vectors' must be in batched column major order (Fortran contiguous) |
| if (compute_eigenvectors) { |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(vectors.mT().is_contiguous()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(vectors.sizes().equals(input.sizes())); |
| } |
| |
| // 'values' must be contiguous |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(values.is_contiguous()); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(values.sizes().equals(values_shape)); |
| |
| // if 'input' is complex then use 'values' directly else create a temporary to hold the real and imaginary parts |
| // and then use at::complex_out |
| Tensor real_imag_values = values; |
| |
| // if 'input' is complex then use 'vectors' directly else maybe create a temporary to hold real vectors |
| // and then use linalg_eig_make_complex_eigenvectors |
| Tensor maybe_complex_vectors = vectors; |
| if (!input.is_complex()) { |
| // first n elements to hold the real portion of the output and the last n elements to hold the imaginary portion |
| auto real_imag_shape = IntArrayRef(input.sizes().data(), input.dim()-2).vec(); // input.shape[:-2] |
| real_imag_shape.push_back(input.size(-1) * 2); |
| real_imag_values = at::empty(real_imag_shape, options, MemoryFormat::Contiguous); |
| |
| // linalg_eig_stub expects real-valued tensor to store eigenvectors |
| // output of linalg_eig_stub need to be post-processed later to produce complex-valued eigenvectors |
| // we do this post-processing only if 'vectors' is complex-valued |
| // otherwise storage of 'vectors' is used directly |
| if (vectors.is_complex() && compute_eigenvectors) { |
| maybe_complex_vectors = at::empty(input.sizes(), options, MemoryFormat::Contiguous); |
| maybe_complex_vectors.transpose_(-2, -1); // make 'maybe_complex_vectors' to have Fortran contiguous memory layout |
| } |
| } |
| |
| // MAGMA uses a hybrid CPU-GPU algorithm that performs well only for large matrices |
| // See: https://github.com/pytorch/pytorch/pull/52491#issuecomment-795685687 |
| // Here we call CPU path for matrices smaller than 2048x2048 |
| // that should be in general significantly faster than calling MAGMA |
| if (input.size(-1) <= 2048) { |
| linalg_eig_stub(at::kCPU, real_imag_values, maybe_complex_vectors, infos, input.to(kCPU), compute_eigenvectors); |
| } else { |
| linalg_eig_stub(input.device().type(), real_imag_values, maybe_complex_vectors, infos, input, compute_eigenvectors); |
| } |
| |
| // if input is not complex we need to do some post-processing |
| if (!input.is_complex()) { |
| // extract real and imaginary parts of the output |
| auto real_values = real_imag_values.slice(/*dim=*/-1, /*start=*/0, /*end*/input.size(-1)); |
| auto imag_values = real_imag_values.slice(/*dim=*/-1, /*start=*/input.size(-1)); |
| |
| // if the imaginary part is zero we don't need to do anything |
| bool is_zero_imag = at::all(imag_values == 0.0).item().toBool(); |
| if (is_zero_imag) { |
| values.copy_(real_values); |
| if (compute_eigenvectors) { |
| vectors.copy_(maybe_complex_vectors); // does nothing for !vectors.is_complex() because vectors.is_same(maybe_complex_vectors) == true |
| } |
| return std::tuple<Tensor&, Tensor&>(values, vectors); |
| } |
| |
| if (values.is_complex()) { |
| values = at::complex_out(values, real_values, imag_values); |
| } else { |
| TORCH_CHECK(false, "torch.linalg.eig: imaginary part of eigenvalues is non-zero, can't safely cast eigenvalues to non-complex dtype.") |
| } |
| if (compute_eigenvectors) { |
| if (vectors.is_complex()) { |
| vectors = linalg_eig_make_complex_eigenvectors(vectors, values, maybe_complex_vectors); |
| } else { |
| TORCH_CHECK(false, "torch.linalg.eig: imaginary part of eigenvectors is non-zero, can't safely cast eigenvectors to non-complex dtype.") |
| } |
| } |
| } |
| |
| return std::tuple<Tensor&, Tensor&>(values, vectors); |
| } |
| |
| std::tuple<Tensor&, Tensor&> linalg_eig_out(const Tensor& input, Tensor& values, Tensor& vectors) { |
| TORCH_CHECK(input.isfinite().all().item<bool>(), "torch.linalg.eig: input tensor should not contain infs or NaNs."); |
| squareCheckInputs(input, "linalg.eig"); |
| |
| // unlike NumPy for real-valued inputs the output is always complex-valued |
| checkLinalgCompatibleDtype("torch.linalg.eig", values.scalar_type(), toComplexType(input.scalar_type()), "eigenvalues"); |
| checkLinalgCompatibleDtype("torch.linalg.eig", vectors.scalar_type(), toComplexType(input.scalar_type()), "eigenvectors"); |
| checkSameDevice("torch.linalg.eig", values, input, "eigenvalues"); |
| checkSameDevice("torch.linalg.eig", vectors, input, "eigenvectors"); |
| |
| // MAGMA doesn't have GPU interface for GEEV routine, it requires inputs to be on CPU |
| auto options = input.options().device(at::kCPU); |
| auto infos = at::zeros({std::max<int64_t>(1, batchCount(input))}, options.dtype(kInt)); |
| |
| // if result is not empty and not in batched column major format we have to allocate a temporary tensor |
| bool is_batched_column_major = false; |
| if (vectors.dim() >= 2) { |
| is_batched_column_major = vectors.mT().is_contiguous(); |
| } |
| |
| bool values_expected_type = (values.scalar_type() == toComplexType(input.scalar_type())); |
| bool vectors_expected_type = (vectors.scalar_type() == toComplexType(input.scalar_type())); |
| |
| auto expected_values_shape = IntArrayRef(input.sizes().data(), input.dim()-1); // input.shape[:-1] |
| bool values_equal_expected_shape = values.sizes().equals(expected_values_shape); |
| bool vectors_equal_expected_shape = vectors.sizes().equals(input.sizes()); |
| |
| // if result is not empty and not in batched column major format |
| bool values_tmp_needed = (values.numel() != 0 && !values.is_contiguous()); |
| bool vectors_tmp_needed = (vectors.numel() != 0 && !is_batched_column_major); |
| // or result does not have the expected shape |
| values_tmp_needed |= (values.numel() != 0 && !values_equal_expected_shape); |
| vectors_tmp_needed |= (vectors.numel() != 0 && !vectors_equal_expected_shape); |
| // or result does not have the expected dtype |
| values_tmp_needed |= !values_expected_type; |
| vectors_tmp_needed |= !vectors_expected_type; |
| // we will allocate a temporary tensor and do the copy |
| |
| // because MAGMA's GEEV takes CPU inputs and returns CPU outputs |
| // "out" tensors that are on GPU device can't be used directly |
| values_tmp_needed |= values.is_cuda(); |
| vectors_tmp_needed |= vectors.is_cuda(); |
| |
| // determine the appropriate scalar_type for the temporary tensors |
| ScalarType values_type = input.scalar_type(); |
| ScalarType vectors_type = input.scalar_type(); |
| if (!input.is_complex()) { |
| // for real-valued input we can have either real- or complex-valued output |
| ScalarType input_complex_dtype = toComplexType(input.scalar_type()); |
| values_type = values.is_complex() ? input_complex_dtype : values_type; |
| vectors_type = vectors.is_complex() ? input_complex_dtype : vectors_type; |
| } |
| |
| if (values_tmp_needed && vectors_tmp_needed) { |
| Tensor values_tmp = at::empty({0}, options.dtype(values_type)); |
| Tensor vectors_tmp = at::empty({0}, options.dtype(vectors_type)); |
| std::tie(values_tmp, vectors_tmp) = linalg_eig_out_info(input, values_tmp, vectors_tmp, infos, true); |
| at::native::resize_output(values, values_tmp.sizes()); |
| values.copy_(values_tmp); |
| at::native::resize_output(vectors, vectors_tmp.sizes()); |
| vectors.copy_(vectors_tmp); |
| } else if (!values_tmp_needed && vectors_tmp_needed) { |
| // use 'values' storage directly |
| Tensor vectors_tmp = at::empty({0}, options.dtype(vectors_type)); |
| std::tie(values, vectors_tmp) = linalg_eig_out_info(input, values, vectors_tmp, infos, true); |
| at::native::resize_output(vectors, vectors_tmp.sizes()); |
| vectors.copy_(vectors_tmp); |
| } else if (values_tmp_needed && !vectors_tmp_needed) { |
| // use 'vectors' storage directly |
| Tensor values_tmp = at::empty({0}, options.dtype(values_type)); |
| std::tie(values_tmp, vectors) = linalg_eig_out_info(input, values_tmp, vectors, infos, true); |
| at::native::resize_output(values, values_tmp.sizes()); |
| values.copy_(values_tmp); |
| } else { |
| // use 'values' and 'vectors' storage directly |
| std::tie(values, vectors) = linalg_eig_out_info(input, values, vectors, infos, true); |
| } |
| |
| // Now check LAPACK/MAGMA error codes |
| at::_linalg_check_errors(infos, "torch.linalg.eig", input.dim() == 2); |
| return std::tuple<Tensor&, Tensor&>(values, vectors); |
| } |
| |
| std::tuple<Tensor, Tensor> linalg_eig(const Tensor& input) { |
| ScalarType complex_dtype = toComplexType(input.scalar_type()); |
| Tensor values = at::empty({0}, input.options().dtype(complex_dtype)); |
| Tensor vectors = at::empty({0}, input.options().dtype(complex_dtype)); |
| |
| at::linalg_eig_outf(input, values, vectors); |
| |
| return std::tuple<Tensor, Tensor>(values, vectors); |
| } |
| |
| Tensor& linalg_eigvals_out(const Tensor& input, Tensor& values) { |
| squareCheckInputs(input, "linalg.eigvals"); |
| |
| // unlike NumPy for real-valued inputs the output is always complex-valued |
| checkLinalgCompatibleDtype("torch.linalg.eigvals", values.scalar_type(), toComplexType(input.scalar_type()), "eigenvalues"); |
| checkSameDevice("torch.linalg.eigvals", values, input, "eigenvalues"); |
| |
| // MAGMA doesn't have GPU interface for GEEV routine, it requires inputs to be on CPU |
| auto options = input.options().device(at::kCPU); |
| auto infos = at::zeros({std::max<int64_t>(1, batchCount(input))}, options.dtype(kInt)); |
| |
| bool values_expected_type = (values.scalar_type() == toComplexType(input.scalar_type())); |
| |
| auto expected_values_shape = IntArrayRef(input.sizes().data(), input.dim()-1); // input.shape[:-1] |
| bool values_equal_expected_shape = values.sizes().equals(expected_values_shape); |
| |
| // if result is not empty and not in batched column major format |
| bool values_tmp_needed = (values.numel() != 0 && !values.is_contiguous()); |
| // or result does not have the expected shape |
| values_tmp_needed |= (values.numel() != 0 && !values_equal_expected_shape); |
| // or result does not have the expected dtype |
| values_tmp_needed |= !values_expected_type; |
| // we will allocate a temporary tensor and do the copy |
| |
| // because MAGMA's GEEV takes CPU inputs and returns CPU outputs |
| // 'values' tensor that is on GPU device can't be used directly |
| values_tmp_needed |= values.is_cuda(); |
| |
| // determine the appropriate scalar_type for the temporary tensors |
| ScalarType values_type = input.scalar_type(); |
| if (!input.is_complex()) { |
| // for real-valued input we can have either real- or complex-valued output |
| ScalarType input_complex_dtype = toComplexType(input.scalar_type()); |
| values_type = values.is_complex() ? input_complex_dtype : values_type; |
| } |
| |
| Tensor vectors; |
| if (values_tmp_needed) { |
| Tensor values_tmp = at::empty({0}, options.dtype(values_type)); |
| std::tie(values_tmp, std::ignore) = linalg_eig_out_info(input, values_tmp, vectors, infos, /*compute_eigenvectors=*/false); |
| at::native::resize_output(values, values_tmp.sizes()); |
| values.copy_(values_tmp); |
| } else { // use 'values' storage directly |
| std::tie(values, std::ignore) = linalg_eig_out_info(input, values, vectors, infos, /*compute_eigenvectors=*/false); |
| } |
| |
| // Now check LAPACK/MAGMA error codes |
| at::_linalg_check_errors(infos, "torch.linalg.eigvals", input.dim() == 2); |
| return values; |
| } |
| |
| Tensor linalg_eigvals(const Tensor& input) { |
| // if input requires grad we must compute the eigenvectors to make this function differentiable |
| // the eigenvectors are not exposed to the user |
| if (_may_require_fw_or_bw_grad(input)) { |
| return std::get<0>(at::linalg_eig(input)); |
| } |
| |
| ScalarType complex_dtype = toComplexType(input.scalar_type()); |
| Tensor values = at::empty({0}, input.options().dtype(complex_dtype)); |
| |
| at::linalg_eigvals_outf(input, values); |
| |
| return values; |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ linalg_svd ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| /* torch.svd, implemented in terms of torch.linalg.svd. There are two main |
| differences: |
| |
| 1. the 2nd parameter is bool some=True, which if effectively the opposite |
| of full_matrices=True |
| |
| 2. svd returns V, while linalg.svd returns Vh = V^H |
| */ |
| |
| DEFINE_DISPATCH(svd_stub); |
| |
| TORCH_IMPL_FUNC(_linalg_svd_out)(const Tensor& A, |
| const bool full_matrices, |
| const bool compute_uv, |
| c10::optional<c10::string_view> driver, |
| const Tensor & U, |
| const Tensor & S, |
| const Tensor & Vh) { |
| // Half optimisation half precondition for some parts of the LAPACK / cuSOLVER |
| // In particular, the call to lapackSvd to compute lwork fails otherwise |
| if (A.numel() == 0) { |
| // Needed in the case that we have e.g. A.shape == (3, 0) and full_matrices=True |
| // We fill U or Vh with the identity matrix as it's a valid SVD for the empty matrix |
| if (compute_uv && full_matrices) { |
| if (U.numel() != 0) { |
| U.zero_(); |
| U.diagonal(0, -2, -1).fill_(1.); |
| } |
| if (Vh.numel() != 0) { |
| Vh.zero_(); |
| Vh.diagonal(0, -2, -1).fill_(1.); |
| } |
| } |
| return; |
| } |
| |
| // We need to distinguish the cuSOLVER case, as cuSOLVER expects F-contig matrices, but |
| // it computes V rather than Vh |
| const bool use_cusolver = at::native::svd_uses_cusolver(A); |
| TORCH_CHECK(use_cusolver || !driver.has_value(), |
| "torch.linalg.svd: keyword argument `driver=` is only supported on CUDA inputs with cuSOLVER backend."); |
| |
| // A always needs to be copied as its contents will be destroyed during the computaton of the SVD |
| // Now, MAGMA needs the copy to be on CPU, while cuSOLVER needs it to be on CUDA, so we'll defer |
| // the copy as a column major matrix to the backends. |
| const auto info = at::zeros(IntArrayRef(A.sizes().begin(), A.sizes().end() - 2), A.options().dtype(kInt)); |
| |
| svd_stub(A.device().type(), |
| A, |
| full_matrices, |
| compute_uv, |
| driver, |
| U, S, Vh, info); |
| |
| // TODO This should be removed, and the code checking for convergence should be lifted |
| // from svd_cusolver to this function. We should then make sure that this function |
| // never errors out. |
| at::_linalg_check_errors(info, "linalg.svd", /*is_matrix*/A.dim() == 2); |
| } |
| |
| std::tuple<Tensor&, Tensor&, Tensor&> |
| linalg_svd_out(const Tensor& A, |
| bool full_matrices, |
| c10::optional<c10::string_view> driver, |
| Tensor & U, |
| Tensor & S, |
| Tensor & Vh) { |
| // This function does not have an _ex variant as we always check errors inside |
| // to assure the convergence of the algorithm anyway. See |
| // https://github.com/pytorch/pytorch/issues/28293 |
| // https://github.com/pytorch/pytorch/issues/64237 |
| // |
| // We must delegate both linalg_svd and linalg_svdvals to |
| // _linalg_svd (rather than delegating linalg_svdvals to linalg_svd) because |
| // 1. We don't want to expose the `compute_uv` parameter in svd |
| // 2. We would like to make use of the `compute_uv=False` optimisation within svdvals |
| // The only way to achieve these two things and still abide by the compositionality rules |
| // is by dispatching to another function. |
| return at::_linalg_svd_out(U, S, Vh, A, full_matrices, /*compute_uv=*/true, driver); |
| } |
| |
| std::tuple<Tensor, Tensor, Tensor> linalg_svd(const Tensor& A, bool full_matrices, |
| c10::optional<c10::string_view> driver) { |
| return at::_linalg_svd(A, full_matrices, /*compute_uv=*/true, driver); |
| } |
| |
| // See note in linalg_svd for why this function does not have an _ex variant |
| Tensor& linalg_svdvals_out(const Tensor& A, c10::optional<c10::string_view> driver, Tensor & S) { |
| // Dummies |
| auto U = at::empty({0}, A.options()); |
| auto Vh = at::empty({0}, A.options()); |
| at::_linalg_svd_out(U, S, Vh, A, /*full_matrices=*/false, /*comptue_uv=*/false, /*driver=*/driver); |
| return S; |
| } |
| |
| Tensor linalg_svdvals(const Tensor& A, c10::optional<c10::string_view> driver) { |
| return std::get<1>(at::_linalg_svd(A, /*full_matrices=*/false, |
| /*compute_uv=*/_may_require_fw_or_bw_grad(A), |
| /*driver=*/driver)); |
| } |
| |
| std::tuple<Tensor&, Tensor&, Tensor&> svd_out(const Tensor& self, bool some, bool compute_uv, |
| Tensor& U, Tensor& S, Tensor& V) { |
| |
| if (compute_uv) { |
| if (V.dim() >= 2) { |
| V.transpose_(-2, -1); |
| } |
| at::linalg_svd_out(U, S, V, self, /*full_matrices=*/!some); |
| V.transpose_(-2, -1); |
| if (V.is_complex()) { |
| // We cannot use `_set_conj` as it does not play well with backwards |
| V.conj_physical_(); |
| } |
| } else { |
| TORCH_CHECK(self.scalar_type() == U.scalar_type(), |
| "torch.svd: Expected out tensor to have dtype ", self.scalar_type(), " but got ", U.scalar_type(), " instead"); |
| |
| TORCH_CHECK(self.scalar_type() == V.scalar_type(), |
| "torch.svd: Expected out tensor to have dtype ", self.scalar_type(), " but got ", V.scalar_type(), " instead"); |
| |
| at::linalg_svdvals_out(S, self); |
| // some == false returns U, Vh of size (m, m), (n, n) full of zeros |
| const auto m = self.size(-2); |
| const auto n = self.size(-1); |
| auto sizes = self.sizes().vec(); |
| |
| sizes.end()[-1] = m; |
| at::native::resize_output(U, sizes); |
| U.zero_(); |
| |
| sizes.end()[-2] = n; |
| sizes.end()[-1] = n; |
| at::native::resize_output(V, sizes); |
| V.zero_(); |
| } |
| |
| return std::tie(U, S, V); |
| } |
| |
| std::tuple<Tensor, Tensor, Tensor> svd(const Tensor& self, bool some, bool compute_uv) { |
| // TODO: uncomment the following when svd is deprecated not only in docs |
| // torch/xla is blocking the transition from at::svd to at::linalg_svd in at::linalg_pinv code |
| // see https://github.com/pytorch/xla/issues/2755 |
| // TORCH_WARN_ONCE( |
| // "torch.svd is deprecated in favor of torch.linalg.svd and will be ", |
| // "removed in a future PyTorch release.\n", |
| // "U, S, V = torch.svd(A, some=some, compute_uv=True) (default)\n", |
| // "should be replaced with\n", |
| // "U, S, Vh = torch.linalg.svd(A, full_matrices=not some)\n", |
| // "V = Vh.mH()\n", |
| // "and\n", |
| // "_, S, _ = torch.svd(A, some=some, compute_uv=False)\n", |
| // "should be replaced with\n", |
| // "S = torch.linalg.svdvals(A)"); |
| TORCH_CHECK(self.dim() >= 2, "linalg.svd: input should have at least 2 dimensions, but has ", self.dim(), " dimensions instead"); |
| Tensor U, S, Vh; |
| if (compute_uv) { |
| std::tie(U, S, Vh) = at::linalg_svd(self, /*full_matrices=*/!some); |
| } else { |
| S = at::linalg_svdvals(self); |
| // some == false returns U, Vh of size (m, m), (n, n) full of zeros |
| const auto m = self.size(-2); |
| const auto n = self.size(-1); |
| |
| auto sizes = self.sizes().vec(); |
| sizes.end()[-1] = m; |
| U = at::zeros(sizes, self.options()); |
| sizes.end()[-2] = n; |
| sizes.end()[-1] = n; |
| Vh = at::zeros(sizes, self.options()); |
| } |
| return std::make_tuple(std::move(U), std::move(S), Vh.mH()); |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ lstsq ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| DEFINE_DISPATCH(lstsq_stub); |
| |
| /* |
| Solves a least squares problem. That is minimizing the squared Frobenius norm of |B - A X|. |
| |
| Input args: |
| * 'input' - Tensor containing batches of m-by-n matrix A. |
| * 'other' - Tensor containing batches of max(m, n)-by-nrhs matrix B. |
| * 'cond' - relative tolerance for determining rank of A. |
| * 'driver' - the name of the LAPACK driver that is used to compute the solution. |
| Output args (modified in-place): |
| * 'solution' - Tensor to store the solution matrix X. |
| * 'residuals' - Tensor to store values of the residual sum of squares for each column of the solution. |
| * 'rank' - Tensor to store the rank of A. |
| * 'singular_values' - Tensor to store the singular values of A. |
| * 'infos' - Tensor to store error codes of linear algebra math library. |
| |
| For further details, please see the LAPACK documentation for GELS/GELSY/GELSS/GELSD routines. |
| */ |
| static void linalg_lstsq_out_info( |
| Tensor& solution, |
| Tensor& residuals, |
| Tensor& rank, |
| Tensor& singular_values, |
| Tensor& infos, |
| const Tensor& input, |
| const Tensor& other, |
| double rcond, |
| std::string& driver) { |
| // These internal asserts make explicit the assumptions in the implementation |
| // Error check with the actual error messages are done on the higher level of |
| // the hierarchy of calls |
| TORCH_INTERNAL_ASSERT(input.dim() >= 2); |
| TORCH_INTERNAL_ASSERT(other.dim() >= 1); |
| |
| auto dim_diff = input.dim() - other.dim(); |
| TORCH_INTERNAL_ASSERT(0 <= dim_diff && dim_diff <= 1); |
| |
| TORCH_INTERNAL_ASSERT(input.scalar_type() == other.scalar_type()); |
| TORCH_INTERNAL_ASSERT(input.device() == other.device()); |
| |
| TORCH_INTERNAL_ASSERT(solution.scalar_type() == input.scalar_type()); |
| TORCH_INTERNAL_ASSERT(solution.device() == input.device()); |
| |
| TORCH_INTERNAL_ASSERT(residuals.device() == input.device()); |
| |
| TORCH_INTERNAL_ASSERT(rank.scalar_type() == at::kLong); |
| TORCH_INTERNAL_ASSERT(rank.device() == input.device()); |
| |
| auto real_dtype = toRealValueType(input.scalar_type()); |
| TORCH_INTERNAL_ASSERT(singular_values.scalar_type() == real_dtype); |
| TORCH_INTERNAL_ASSERT(singular_values.device() == input.device()); |
| |
| TORCH_INTERNAL_ASSERT(infos.scalar_type() == at::kInt); |
| TORCH_INTERNAL_ASSERT(infos.device() == input.device()); |
| TORCH_INTERNAL_ASSERT(infos.numel() == std::max<int64_t>(1, batchCount(input))); |
| TORCH_INTERNAL_ASSERT(infos.is_contiguous()); |
| |
| bool vector_case = linalg_solve_is_vector_rhs(input, other); |
| // we need to unsqueeze 'other' because 2-dimensional tensors are expected in the implementation |
| Tensor other_2d = vector_case ? other.unsqueeze(-1) : other; |
| |
| TORCH_INTERNAL_ASSERT(input.size(-2) == other_2d.size(-2)); |
| |
| std::vector<int64_t> expected_solution_shape = broadcast_batch_size(input, other_2d, input.dim() - 2); |
| // the actual shape of the solution returned is (*, n,) or (*, n, nrhs) |
| // but LAPACK requires extra dimensions to store raw residuals |
| // so the expected shape is (*, max(m, n),) or (*, max(m, n), nrhs) |
| auto m = input.size(-2); |
| auto n = input.size(-1); |
| auto nrhs = other.size(-1); |
| expected_solution_shape.push_back(std::max(m, n)); |
| if (!vector_case) { |
| expected_solution_shape.push_back(nrhs); |
| } |
| |
| // if 'solution' has no elements we can modify it |
| if (solution.numel() == 0) { |
| if (vector_case) { |
| solution.resize_(expected_solution_shape, MemoryFormat::Contiguous); |
| } else { |
| auto shape_transposed = expected_solution_shape; |
| std::swap(shape_transposed.end()[-1], shape_transposed.end()[-2]); |
| solution.resize_(shape_transposed, MemoryFormat::Contiguous); |
| solution.transpose_(-2, -1); |
| } |
| } |
| |
| // if 'solution' is non-empty it must have the expected shape |
| TORCH_INTERNAL_ASSERT(solution.sizes().equals(expected_solution_shape)); |
| |
| // 'solution' must be in batched column major order (Fortran contiguous) for 2D inputs |
| // or C contiguous for 1D input |
| if (vector_case) { |
| TORCH_INTERNAL_ASSERT(solution.is_contiguous()); |
| } else { |
| TORCH_INTERNAL_ASSERT(solution.mT().is_contiguous()); |
| } |
| |
| // for 1-dimensional 'other', we need to unsqueeze the 'solution' before passing to "apply_solve" |
| if (vector_case) { |
| solution = solution.unsqueeze_(-1); |
| } |
| |
| // _linalg_lstsq_helper_ performs calculations in-place and 'solution' must be a copy of other_2d |
| solution.narrow(-2, 0, other_2d.size(-2)).copy_(other_2d); |
| |
| // if 'rank' is empty we might resize it |
| auto input_batch_shape = IntArrayRef(input.sizes().cbegin(), input.sizes().cend() - 2); |
| if (rank.numel() == 0 && driver != "gels") { // gels driver doesn't set 'rank' |
| rank.resize_(input_batch_shape, MemoryFormat::Contiguous); |
| } |
| |
| // if 'rank' is non-empty it must have the expected shape and be contiguous |
| if (driver != "gels") { |
| TORCH_INTERNAL_ASSERT(rank.sizes().equals(input_batch_shape)); |
| TORCH_INTERNAL_ASSERT(rank.is_contiguous()); |
| } |
| |
| // if 'singular_values' is empty we might resize it |
| auto singular_values_shape = input_batch_shape.vec(); |
| singular_values_shape.push_back(std::min(m, n)); |
| if (singular_values.numel() == 0 && (driver == "gelsd" || driver == "gelss")) { |
| singular_values.resize_(singular_values_shape, MemoryFormat::Contiguous); |
| } |
| |
| // if 'singular_values' is non-empty it must have the expected shape and be contiguous |
| if (driver == "gelsd" || driver == "gelss") { |
| TORCH_INTERNAL_ASSERT(singular_values.sizes().equals(singular_values_shape)); |
| TORCH_INTERNAL_ASSERT(singular_values.is_contiguous()); |
| } |
| |
| // 'input' is modified in-place so we need a column-major copy |
| auto input_working_copy = copyBatchedColumnMajor(input); |
| |
| // now the actual call that computes the result in-place (apply_lstsq) |
| lstsq_stub(input.device().type(), input_working_copy, solution, rank, singular_values, infos, rcond, driver); |
| |
| // residuals are available only if m > n and drivers other than gelsy used |
| if (m > n && driver != "gelsy") { |
| // if the driver is gelss or gelsd then the residuals are available only if rank == n |
| bool compute_residuals = true; |
| if (driver == "gelss" || driver == "gelsd") { |
| if (input.dim() == 2) { |
| compute_residuals = (rank.item().toInt() == n); |
| } else { |
| // it is not clear what to do if some matrices have rank < n in case of batched input |
| // For now let's compute the residuals only if all matrices have rank equal to n |
| // This behaviour may be changed in the future |
| // See https://github.com/pytorch/pytorch/issues/56483 |
| compute_residuals = at::all(rank == n).item().toBool(); |
| } |
| } |
| if (compute_residuals) { |
| // LAPACK stores residuals data for postprocessing in rows n:(m-n) |
| auto raw_residuals = solution.narrow(/*dim=*/-2, /*start=*/n, /*length*/m - n); |
| if (raw_residuals.is_complex()) { |
| raw_residuals.mul_(raw_residuals.conj()); |
| raw_residuals = at::real(raw_residuals); |
| } else { |
| raw_residuals.pow_(2); |
| } |
| at::sum_out(residuals, raw_residuals, /*dim=*/-2, /*keepdim=*/false, /*dtype*/real_dtype); |
| } |
| } |
| auto solution_view = solution.narrow(/*dim=*/-2, /*start=*/0, /*length*/n); |
| // manually restride original |
| solution.set_(solution.storage(), solution_view.storage_offset(), solution_view.sizes(), solution_view.strides()); |
| if (m == 0) { |
| solution.zero_(); |
| } |
| |
| // for 1-dimensional 'other', we need to squeeze the solution after "apply_lstsq" |
| if (vector_case) { |
| solution.squeeze_(-1); |
| } |
| } |
| |
| static std::string get_default_lstsq_driver(c10::optional<c10::string_view> driver, const Tensor& input) { |
| // if `driver` is empty, we set driver_str to "gels" if working with CUDA tensors, |
| // otherwise to "gelsy" driver. |
| std::string driver_str; |
| // check whether the user provided name is a valid driver name |
| if (driver.has_value()) { |
| driver_str = std::string(driver.value()); |
| // convert `driver_str` to lower case inplace. |
| std::transform(driver_str.begin(), driver_str.end(), driver_str.begin(), |
| [](unsigned char c) { return std::tolower(c); }); |
| static std::unordered_set<c10::string_view> allowed_drivers = { |
| "gels", "gelsy", "gelsd", "gelss" |
| }; |
| if (input.device() == at::kCPU) { |
| TORCH_CHECK( |
| allowed_drivers.find(driver_str) != allowed_drivers.end(), |
| "torch.linalg.lstsq: parameter `driver` should be one of " |
| "(gels, gelsy, gelsd, gelss)" |
| ); |
| } else { // else if (input.is_cuda()) |
| TORCH_CHECK( |
| driver_str == "gels", |
| "torch.linalg.lstsq: `driver` other than `gels` is not supported on CUDA" |
| ); |
| } |
| } else { |
| // if driver name is not provided, set to default 'gelsy' if on CPU, |
| // or to `gels` if on CUDA. |
| driver_str = input.is_cuda() ? "gels" : "gelsy"; |
| } |
| return driver_str; |
| } |
| |
| std::tuple<Tensor&, Tensor&, Tensor&, Tensor&> linalg_lstsq_out( |
| const Tensor& input, |
| const Tensor& other, |
| c10::optional<double> rcond, |
| c10::optional<c10::string_view> driver, |
| Tensor& solution, |
| Tensor& residuals, |
| Tensor& rank, |
| Tensor& singular_values) { |
| TORCH_CHECK(input.dim() >= 2, "torch.linalg.lstsq: input must have at least 2 dimensions."); |
| TORCH_CHECK(other.dim() >= 1, "torch.linalg.lstsq: other must have at least 1 dimension."); |
| TORCH_CHECK( |
| input.scalar_type() == other.scalar_type(), |
| "torch.linalg.lstsq: Expected input and other to have the same dtype, but got input's dtype ", |
| input.scalar_type(), |
| " and other's dtype ", |
| other.scalar_type()); |
| |
| auto dim_diff = input.dim() - other.dim(); |
| TORCH_CHECK( |
| 0 <= dim_diff && dim_diff <= 1, |
| "torch.linalg.lstsq: input.dim() must be greater or equal to other.dim() and (input.dim() - other.dim()) <= 1"); |
| Tensor other_2d = dim_diff ? other.unsqueeze(-1) : other; |
| TORCH_CHECK( |
| input.size(-2) == other_2d.size(-2), |
| dim_diff ? "torch.linalg.lstsq: input.size(-2) should match other.size(-1)" |
| : "torch.linalg.lstsq: input.size(-2) should match other.size(-2)"); |
| |
| checkSameDevice("torch.linalg.lstsq", other, input, "other"); |
| checkSameDevice("torch.linalg.lstsq", solution, input, "solution"); |
| checkSameDevice("torch.linalg.lstsq", residuals, input, "residuals"); |
| checkSameDevice("torch.linalg.lstsq", rank, input, "rank"); |
| checkSameDevice("torch.linalg.lstsq", singular_values, input, "singular_values"); |
| |
| // 'solution' is expected to have same dtype as input |
| checkLinalgCompatibleDtype("torch.linalg.lstsq", solution, input, "solution"); |
| |
| // 'residuals' is expected to have real float dtype |
| ScalarType real_dtype = c10::toRealValueType(input.scalar_type()); |
| checkLinalgCompatibleDtype("torch.linalg.lstsq", residuals.scalar_type(), real_dtype, "solution"); |
| |
| // 'rank' is expected to have integer dtype |
| // actual LAPACK calls use int32_t type for rank, but we promote it to int64_t |
| // to be consistent with torch.linalg.matrix_rank output dtype |
| ScalarType rank_expected_type = ScalarType::Long; |
| checkLinalgCompatibleDtype("torch.linalg.lstsq", rank.scalar_type(), rank_expected_type, "rank"); |
| |
| // 'singular_values' is expected to have real float dtype |
| checkLinalgCompatibleDtype("torch.linalg.lstsq", singular_values.scalar_type(), real_dtype, "singular_values"); |
| |
| std::string driver_name = get_default_lstsq_driver(driver, input); |
| |
| // set default rcond value |
| double rcond_value = rcond.has_value() |
| ? rcond.value() |
| : _get_epsilon(c10::toRealValueType(input.scalar_type())) * std::max<int64_t>(input.size(-2), input.size(-1)); |
| |
| auto infos = at::zeros({std::max<int64_t>(1, batchCount(input))}, input.options().dtype(kInt)); |
| |
| // now check whether the provided output tensors can be used directly |
| |
| // Two types of 'other' tensors are supported: |
| // - 1-dimensional (1D) tensor or batch of 1D tensors (vector case) |
| // - 2-dimensional (2D) tensor or batch of 2D tensors (matrix case) |
| // original torch.lstsq supported only the matrix case, while NumPy works for both cases |
| // for the batched input we need to be able to distinguish them |
| // auto expected_batched_rhs_shape = IntArrayRef(input.sizes().data(), input.dim() - 1); // input.shape[:-1] |
| // bool vector_case = other.dim() == 1 || (input.dim() - 1 == other.dim() && other.sizes().equals(expected_batched_rhs_shape)); |
| bool vector_case = linalg_solve_is_vector_rhs(input, other); |
| |
| // provided output tensor can be used directly if: |
| // 1. the shape matches the expected shape |
| // 2. the dtype matches the expected dtype |
| // 3. the tensor is contiguous |
| |
| // Checks for the 'solution' tensor |
| std::vector<int64_t> expected_solution_shape = broadcast_batch_size(input, other_2d, input.dim() - 2); |
| // the actual shape of the shape of the solution returned in (*, n,) or (*, n, nrhs) |
| // but LAPACK requires extra dimensions so the expected shape is (*, max(m, n),) or (*, max(m, n), nrhs) |
| expected_solution_shape.push_back(std::max(input.size(-1), input.size(-2))); |
| if (!vector_case && other.dim() > 2) { |
| expected_solution_shape.push_back(other.size(-1)); |
| } |
| |
| bool solution_equal_expected_shape = solution.sizes().equals(expected_solution_shape); |
| bool solution_input_same_type = (solution.scalar_type() == input.scalar_type()); |
| |
| bool is_solution_batched_column_major = false; |
| if (vector_case) { |
| is_solution_batched_column_major = solution.is_contiguous(); |
| } else if (!vector_case && solution.dim() >= 2) { |
| is_solution_batched_column_major = solution.mT().is_contiguous(); |
| } |
| |
| // 'residuals' is not checked here because at::sum_out(residuals, ...) does that |
| |
| auto input_batch_shape = IntArrayRef(input.sizes().cbegin(), input.sizes().cend() - 2); |
| |
| // Checks for the 'rank' tensor |
| // rank is a scalar value for each matrix in the batch so |
| // rank's expected shape is equal to input.shape[0:input.ndim-2] |
| bool rank_equal_expected_shape = true; |
| bool rank_equal_expected_type = true; |
| bool rank_is_contiguous = true; |
| if (driver_name != "gels") { // gels driver doesn't set 'rank' |
| rank_equal_expected_shape = rank.sizes().equals(input_batch_shape); |
| rank_equal_expected_type = (rank.scalar_type() == at::kLong); |
| rank_is_contiguous = rank.is_contiguous(); |
| } |
| |
| // Checks for the 'singular_values' tensor |
| // singular values are computed only with "gelsd" and "gelss" drivers currently |
| bool singular_values_equal_expected_shape = true; |
| bool singular_values_equal_expected_type = true; |
| bool singular_values_is_contiguous = true; |
| if (driver_name == "gelsd" || driver_name == "gelss") { |
| auto singular_values_shape = input_batch_shape.vec(); |
| singular_values_shape.push_back(std::min(input.size(-1), input.size(-2))); |
| singular_values_equal_expected_shape = singular_values.sizes().equals(singular_values_shape); |
| singular_values_equal_expected_type = (singular_values.scalar_type() == real_dtype); |
| singular_values_is_contiguous = singular_values.is_contiguous(); |
| } |
| |
| // if solution is not empty and not in batched column major format |
| bool copy_needed = (solution.numel() != 0 && !is_solution_batched_column_major); |
| copy_needed |= !solution_input_same_type; // or solution does not have the same dtype as input |
| copy_needed |= (solution.numel() != 0 && !solution_equal_expected_shape); // or solution does not have the expected shape |
| |
| copy_needed |= !rank_equal_expected_type; |
| copy_needed |= (rank.numel() != 0 && !rank_equal_expected_shape); |
| copy_needed |= (rank.numel() != 0 && !rank_is_contiguous); |
| |
| copy_needed |= !singular_values_equal_expected_type; |
| copy_needed |= (singular_values.numel() != 0 && !singular_values_equal_expected_shape); |
| copy_needed |= (singular_values.numel() != 0 && !singular_values_is_contiguous); |
| |
| if (copy_needed) { // we have to allocate temporary tensors |
| Tensor solution_tmp = at::empty({0}, input.options()); |
| Tensor residuals_tmp = at::empty({0}, input.options().dtype(real_dtype)); |
| Tensor rank_tmp = at::empty({0}, input.options().dtype(at::kLong)); |
| Tensor singular_values_tmp = at::empty({0}, input.options().dtype(real_dtype)); |
| |
| linalg_lstsq_out_info(solution_tmp, residuals_tmp, rank_tmp, singular_values_tmp, infos, input, other, rcond_value, driver_name); |
| |
| at::native::resize_output(solution, solution_tmp.sizes()); |
| solution.copy_(solution_tmp); |
| |
| at::native::resize_output(residuals, residuals_tmp.sizes()); |
| residuals.copy_(residuals_tmp); |
| |
| at::native::resize_output(rank, rank_tmp.sizes()); |
| rank.copy_(rank_tmp); |
| |
| at::native::resize_output(singular_values, singular_values_tmp.sizes()); |
| singular_values.copy_(singular_values_tmp); |
| } else { |
| // else use the provided output storage directly |
| linalg_lstsq_out_info(solution, residuals, rank, singular_values, infos, input, other, rcond_value, driver_name); |
| } |
| |
| at::_linalg_check_errors(infos, "torch.linalg.lstsq", infos.numel() <= 1); |
| return std::tuple<Tensor&, Tensor&, Tensor&, Tensor&>(solution, residuals, rank, singular_values); |
| } |
| |
| std::tuple<Tensor, Tensor, Tensor, Tensor> linalg_lstsq( |
| const Tensor& input, const Tensor& other, |
| c10::optional<double> rcond, |
| c10::optional<c10::string_view> driver) { |
| Tensor solution = at::empty({0}, input.options()); |
| Tensor residuals = at::empty({0}, input.options().dtype(toRealValueType(input.scalar_type()))); |
| Tensor rank = at::empty({0}, input.options().dtype(at::kLong)); |
| Tensor singular_values = at::empty({0}, input.options().dtype(toRealValueType(input.scalar_type()))); |
| std::tie(solution, residuals, rank, singular_values) = |
| at::linalg_lstsq_outf(input, other, rcond, driver, solution, residuals, rank, singular_values); |
| return std::make_tuple(std::move(solution), std::move(residuals), std::move(rank), std::move(singular_values)); |
| } |
| |
| DEFINE_DISPATCH(ldl_factor_stub); |
| |
| TORCH_IMPL_FUNC(linalg_ldl_factor_ex_out) |
| (const Tensor& self, |
| bool hermitian, |
| bool check_errors, |
| const Tensor& LD, |
| const Tensor& pivots, |
| const Tensor& info) { |
| // LAPACK workspace query segfalts if the input has 0 in batch dimensions. |
| if (self.numel() == 0) { |
| info.zero_(); |
| return; |
| } |
| |
| // We decided not to include upper flag in the API. |
| // https://github.com/pytorch/pytorch/pull/69828#issuecomment-1015143819 |
| // We can revisit this decision later and remove upper completely |
| // also from low level functions or add it to the public API. |
| bool upper = false; |
| if (upper) { |
| at::triu_out(const_cast<Tensor&>(LD), self); |
| } else { |
| at::tril_out(const_cast<Tensor&>(LD), self); |
| } |
| |
| // call ldl_factor_stub that fills the result tensors |
| ldl_factor_stub( |
| self.device().type(), LD, pivots, info, upper, hermitian); |
| |
| if (check_errors) { |
| at::_linalg_check_errors( |
| info, "torch.linalg.ldl_factor_ex", self.dim() == 2); |
| } |
| } |
| |
| std::tuple<Tensor&, Tensor&> linalg_ldl_factor_out( |
| const Tensor& self, |
| bool hermitian, |
| Tensor& LD, |
| Tensor& pivots) { |
| auto info = at::empty({0}, self.options().dtype(kInt)); |
| // We pass check_errors as we want to use lu_factor rather than lu_factor_ex |
| // in the errors |
| at::linalg_ldl_factor_ex_outf( |
| self, hermitian, /*check_errors=*/false, LD, pivots, info); |
| at::_linalg_check_errors(info, "torch.linalg.ldl_factor", self.dim() == 2); |
| return std::tie(LD, pivots); |
| } |
| |
| std::tuple<Tensor, Tensor> linalg_ldl_factor( |
| const Tensor& self, |
| bool hermitian) { |
| Tensor LD, pivots, info; |
| std::tie(LD, pivots, info) = |
| at::linalg_ldl_factor_ex(self, hermitian, /*check_errors=*/false); |
| at::_linalg_check_errors(info, "torch.linalg.ldl_factor", self.dim() == 2); |
| return std::make_tuple(std::move(LD), std::move(pivots)); |
| } |
| |
| DEFINE_DISPATCH(ldl_solve_stub); |
| |
| TORCH_IMPL_FUNC(linalg_ldl_solve_out) |
| (const Tensor& LD, |
| const Tensor& pivots, |
| const Tensor& B, |
| bool hermitian, |
| const Tensor& result) { |
| if (LD.numel() == 0 || pivots.numel() == 0) { |
| return; |
| } |
| |
| auto pivots_ = pivots.expect_contiguous(); |
| |
| auto LD_ = at::native::borrow_else_clone( |
| LD.mT().is_contiguous(), LD, LD, /*row_major=*/false); |
| result.copy_(B); |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(batchCount(result) == batchCount(result)); |
| |
| ldl_solve_stub( |
| B.device().type(), *LD_, *pivots_, result, false, hermitian); |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ solve_triangular ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| Tensor& linalg_vecdot_out(const Tensor& x, const Tensor& y, int64_t dim, Tensor& out) { |
| checkFloatingOrComplex(x, "linalg.vecdot"); |
| TORCH_CHECK(x.scalar_type() == y.scalar_type(), |
| "linalg.vecdot: Expected x and y to have the same dtype, but found x of type ", |
| x.scalar_type(), " and y of type ", y.scalar_type(), " instead"); |
| // out checks |
| TORCH_CHECK(out.scalar_type() == x.scalar_type(), |
| "linalg.vecdot: Expected out of dtype", x.scalar_type(), |
| " but found ", out.scalar_type()); |
| checkSameDevice("linalg.vecdot", x, out); |
| |
| // Computes x^H y |
| if (x.dim() == 1 && y.dim() == 1) { |
| at::native::resize_output(out, {}); |
| return at::vdot_out(out, x, y); |
| } else { |
| return at::sum_out(out, x.conj() * y, /*dim=*/dim); |
| } |
| } |
| |
| Tensor linalg_vecdot(const Tensor& x, const Tensor& y, int64_t dim) { |
| checkFloatingOrComplex(x, "linalg.vecdot"); |
| TORCH_CHECK(x.scalar_type() == y.scalar_type(), |
| "linalg.vecdot: Expected x and y to have the same dtype, but found x of type ", |
| x.scalar_type(), " and y of type ", y.scalar_type(), " instead"); |
| // Computes x^H y |
| if (x.dim() == 1 && y.dim() == 1) { |
| return at::vdot(x, y); |
| } else { |
| return x.conj().mul(y).sum(/*dim=*/dim); |
| } |
| } |
| |
| /* |
| Solves the matrix equation AX = B for A triangular. |
| 'left' If true solves AX = B, if false solves XA = B |
| 'upper' controls the portion of input matrix to consider in computations, |
| 'unitriangular' if true then we assume diag(A) to be ones |
| 'out' The tensor with the result. If A == out, A will be modified in place |
| */ |
| Tensor& linalg_solve_triangular_out( |
| const Tensor& A, |
| const Tensor& B, |
| bool upper, |
| bool left, |
| bool unitriangular, |
| Tensor& out) { |
| checkInputsSolver(A, B, left, "linalg.solve_triangular"); |
| Tensor A_, B_; |
| std::tie(B_, A_) = _linalg_broadcast_batch_dims(B, A, /*don't check errors*/nullptr); |
| |
| // We'll write F-contig / F-transpose for FORTRAN contiguous / FORTRAN transpose etc |
| // We say that a matrix is F-ready if it's F-contig OR F-transpose |
| // At this point, A, B have been broadcasted but may or may not be F-ready |
| |
| // The following algorithm minimises copies and allocations. In pseudocode: |
| // if out is wrong size: |
| // resize_output(out) |
| // # Invariant: out is the right size |
| // Tensor out_f; # Tensor that we will pass to FORTRAN |
| // if out is F-ready: |
| // out_f = out; |
| // else: |
| // Allocate out_f F-ready |
| // if B != out_f: |
| // copy B into out_f |
| // # Invariant: out_f F-ready and has B copied into it |
| // if out_f is F-transposed: |
| // transpose equation |
| // if out_f is conj: |
| // conjugate equation |
| // # Invariant: out_f is not conjugated and F-contig |
| // Tensor A_f; # Tensor that will be sent to FORTRAN |
| // if A is F-ready: |
| // if A is conj and A is not transposed: |
| // # We need to clone A in this case. See [Cloning A] |
| // clone A F-contig into A_f |
| // else: |
| // A_f = A; |
| // else: |
| // clone A F-contig into A_f |
| // # Invariant: out_f is F-contig and A_f is F-ready |
| // # We pass FORTRAN the flags indicating if A_f is transposed and or conjugated |
| // |
| // # Here we undo the conjugations / transposes on out_f if needed |
| // |
| // if out_f not same out: |
| // copy out_f into out |
| // return out |
| // |
| // Note: The logic for the negative bit is the same as that for the conjugate bit |
| // |
| // Note: [Cloning A] If we are careful when allocating B when it needs to be allocated at the |
| // beginning of the algorithm, it is possible to always elide the copy of A here. |
| // Via this trick, the algorithm will copy at most one of A or B (never both) whenever A |
| // and B are F-ready and not A.is_neg() (which happens almost always in practice). |
| // When called as f(A, B, out=B) in most practical cases it'll perform no copies. |
| |
| const bool avoid_copy_A = A_.transpose(-2, -1).is_contiguous() && A_.is_conj(); |
| if (avoid_copy_A) { |
| // See Note: [Cloning A] |
| at::native::resize_output(out, B_.sizes()); |
| } |
| else { |
| // poorman's reimplementation of resize_output with result F-contig |
| if (resize_output_check(out, B_.sizes())) { |
| out.resize_(B_.transpose(-2, -1).sizes(), MemoryFormat::Contiguous); |
| out.transpose_(-2, -1); // make 'out' have Fortran contiguous memory layout |
| } |
| } |
| // Invariant: out has the right size, so we'll be able to copy into it later on |
| |
| Tensor out_f; // the out that will go into fortran |
| // We use C10_LIKELY mostly for documentation as it helps following what's the most likely path |
| if C10_LIKELY (is_row_or_column_contiguous(out)) { |
| out_f = out; |
| if C10_LIKELY (!out.is_same(B_)) { |
| out_f.copy_(B_); |
| } |
| } else { |
| if (avoid_copy_A) { |
| // See Note: [Cloning A] |
| out_f = B_.clone(at::MemoryFormat::Contiguous); |
| } |
| else { |
| out_f = cloneBatchedColumnMajor(B_); |
| } |
| } |
| // Invariant: out_f F-ready and has B copied into it |
| |
| // out_f is F-transposed |
| bool transpose_A = false; |
| bool transpose_out_f = false; |
| if (out_f.stride(-1) == 1) { |
| left = !left; |
| transpose_A = true; |
| transpose_out_f = true; |
| out_f.transpose_(-2 ,-1); |
| } |
| |
| // No need to conjugate anything if out_f is conj as AX = conj(B) <=> conj(A)conj(X) = B |
| // and X = B after the algortihm. We just anotate that A is conjugated later on |
| // The solution will be written into out_f, so it'll be conjugated already |
| |
| Tensor A_f = std::move(A_); // The A that will go into fortran |
| |
| bool A_is_conj = A_f.is_conj() != out_f.is_conj(); |
| bool A_is_neg = A_f.is_neg() != out_f.is_neg(); |
| bool A_is_f_contig = (A_f.stride(-1) == 1) == transpose_A; |
| if C10_UNLIKELY (!is_row_or_column_contiguous(A_f)) { |
| // We first anotate with flags on A_f all the conj / transpose / neg coming from out |
| // and then we clone the resulting tensor to resolve all of them in memory |
| if (out_f.is_conj()) { |
| A_f = A_f.conj(); |
| } |
| A_is_conj = false; |
| |
| if (out_f.is_neg()) { |
| A_f = A_f._neg_view(); |
| } |
| A_is_neg = false; |
| |
| // This choice is to be consistent with how we flip `upper` later on |
| // Note that this is the same reasoning we apply for neg and conj below |
| // If B has neg or out or transpose, then we need to resolve it in memory |
| A_f = transpose_A ? A_f.clone(at::MemoryFormat::Contiguous) |
| : cloneBatchedColumnMajor(A_f); |
| A_is_f_contig = true; |
| } else if C10_UNLIKELY (A_is_f_contig && A_is_conj) { |
| if C10_UNLIKELY (A_f.is_neg() || out_f.is_neg()) { |
| // Cases A_is_neg (remember that B.is_neg() iff out_f.is_same(B)) |
| // -AX = -B => A(-X) = B. Swap neg of A_f. Nothing to do on X as X.is_same(B). |
| // -AX = B. We resolve the neg in memory |
| // AX = -B => -A -X = B. We resolve the neg in memory for A, |
| // Since X.is_same(B), we already have that X.is_neg() == true |
| |
| // We do the neg with a view, as this will be resolved in the clone below |
| if (out_f.is_neg()) { |
| A_f = A_f._neg_view(); |
| } |
| A_is_neg = false; |
| } |
| // We resolve the transpose if necessary and then leave A_f F-transposed, |
| // as BLAS can handle the case F-transposed and conjugated |
| A_f = at::clone(transpose_A ? A_f.mT() : A_f, at::MemoryFormat::Contiguous); |
| A_is_f_contig = false; |
| if (transpose_A) { |
| upper = !upper; |
| } |
| // As we've already resolved the conj of A in the clone |
| A_is_conj = out_f.is_conj(); |
| } else if C10_UNLIKELY (A_is_neg) { |
| // We follow the same logic as above, only that in this case we need to perform the |
| // negation in memory |
| if (out_f.is_neg()) { |
| A_f = -A_f; |
| } else { |
| A_f = A_f.resolve_neg(); |
| } |
| A_is_neg = false; |
| // As we've already resolved the conj of A in the negationa bove |
| A_is_conj = out_f.is_conj(); |
| } |
| // Invariant: out_f is F-contig and A_f is F-ready |
| // neg has been resolved |
| |
| // If we pass the matrix physically F-transposed, we need to change the parity of upper |
| if (A_f.stride(-1) == 1) { |
| upper = !upper; |
| } |
| |
| triangular_solve_stub( |
| A_f.device().type(), A_f, out_f, |
| /*left=*/left, |
| /*upper=*/upper, |
| /*transpose*/to_transpose_type(A_is_f_contig, A_is_conj), |
| /*unitriangular=*/unitriangular); |
| |
| if (transpose_out_f) { |
| out_f.transpose_(-2, -1); |
| } |
| |
| if (!out_f.is_same(out)) { |
| out.copy_(out_f); |
| } |
| return out; |
| } |
| |
| Tensor linalg_solve_triangular( |
| const Tensor& A, |
| const Tensor& B, |
| bool upper, |
| bool left, |
| bool unitriangular) { |
| Tensor out = at::empty({0}, A.options()); |
| linalg_solve_triangular_out(A, B, upper, left, unitriangular, out); |
| return out; |
| } |
| |
| Tensor linalg_vander( |
| const Tensor& x, |
| c10::optional<int64_t> N) { |
| auto t = x.scalar_type(); |
| TORCH_CHECK(t == ScalarType::Float || |
| t == ScalarType::Double || |
| t == ScalarType::ComplexFloat || |
| t == ScalarType::ComplexDouble || |
| c10::isIntegralType(t, false), |
| "linalg.vander supports floating point, complex, and integer tensors, but got ", t); |
| const auto x_ = x.dim() == 0 ? x.unsqueeze(-1) : x; |
| |
| auto shape = x_.sizes().vec(); |
| const auto n = N.value_or(shape.back()); |
| TORCH_CHECK(n > 1, "N must be greater than 1."); |
| |
| // Append cumprod of the oher 0...n-1 powers |
| shape.push_back(n - 1); |
| auto result = at::cumprod(x_.unsqueeze(-1).expand(shape), -1); |
| // The row of ones |
| shape.back() = 1LL; |
| auto ones = result.new_ones(shape); |
| return at::cat({std::move(ones), std::move(result)}, /*dim=*/ -1); |
| } |
| }} // namespace at::native |