| import torch |
| import torch.distributed as dist |
| |
| from torch.autograd.function import Function |
| |
| class SyncBatchNorm(Function): |
| |
| @staticmethod |
| def forward(self, input, weight, bias, running_mean, running_var, eps, momentum, process_group, world_size): |
| input = input.contiguous() |
| |
| count = torch.empty(1, |
| dtype=running_mean.dtype, |
| device=input.device).fill_(input.numel() // input.size(1)) |
| |
| # calculate mean/invstd for input. |
| mean, invstd = torch.batch_norm_stats(input, eps) |
| |
| num_channels = input.shape[1] |
| # C, C, 1 -> (2C + 1) |
| combined = torch.cat([mean, invstd, count], dim=0) |
| # world_size * (2C + 1) |
| combined_list = [ |
| torch.empty_like(combined) for k in range(world_size) |
| ] |
| # Use allgather instead of allreduce since I don't trust in-place operations .. |
| dist.all_gather(combined_list, combined, process_group, async_op=False) |
| combined = torch.stack(combined_list, dim=0) |
| # world_size * (2C + 1) -> world_size * C, world_size * C, world_size * 1 |
| mean_all, invstd_all, count_all = torch.split(combined, num_channels, dim=1) |
| |
| size = count_all.view(-1).long().sum() |
| if size == 1: |
| raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size)) |
| |
| # calculate global mean & invstd |
| mean, invstd = torch.batch_norm_gather_stats_with_counts( |
| input, |
| mean_all, |
| invstd_all, |
| running_mean, |
| running_var, |
| momentum, |
| eps, |
| count_all.view(-1) |
| ) |
| |
| self.save_for_backward(input, weight, mean, invstd, count_all) |
| self.process_group = process_group |
| |
| # apply element-wise normalization |
| out = torch.batch_norm_elemt(input, weight, bias, mean, invstd, eps) |
| return out |
| |
| @staticmethod |
| def backward(self, grad_output): |
| grad_output = grad_output.contiguous() |
| saved_input, weight, mean, invstd, count_tensor = self.saved_tensors |
| grad_input = grad_weight = grad_bias = None |
| process_group = self.process_group |
| |
| # calculate local stats as well as grad_weight / grad_bias |
| sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce( |
| grad_output, |
| saved_input, |
| mean, |
| invstd, |
| weight, |
| self.needs_input_grad[0], |
| self.needs_input_grad[1], |
| self.needs_input_grad[2] |
| ) |
| |
| if self.needs_input_grad[0]: |
| # synchronizing stats used to calculate input gradient. |
| # TODO: move div_ into batch_norm_backward_elemt kernel |
| num_channels = sum_dy.shape[0] |
| combined = torch.cat([sum_dy, sum_dy_xmu], dim=0) |
| torch.distributed.all_reduce( |
| combined, torch.distributed.ReduceOp.SUM, process_group, async_op=False) |
| sum_dy, sum_dy_xmu = torch.split(combined, num_channels) |
| |
| divisor = count_tensor.sum() |
| mean_dy = sum_dy / divisor |
| mean_dy_xmu = sum_dy_xmu / divisor |
| # backward pass for gradient calculation |
| grad_input = torch.batch_norm_backward_elemt( |
| grad_output, |
| saved_input, |
| mean, |
| invstd, |
| weight, |
| mean_dy, |
| mean_dy_xmu |
| ) |
| |
| # synchronizing of grad_weight / grad_bias is not needed as distributed |
| # training would handle all reduce. |
| if weight is None or not self.needs_input_grad[1]: |
| grad_weight = None |
| |
| if weight is None or not self.needs_input_grad[2]: |
| grad_bias = None |
| |
| return grad_input, grad_weight, grad_bias, None, None, None, None, None, None |
| |
| class CrossMapLRN2d(Function): |
| |
| @staticmethod |
| def forward(ctx, input, size, alpha=1e-4, beta=0.75, k=1): |
| ctx.size = size |
| ctx.alpha = alpha |
| ctx.beta = beta |
| ctx.k = k |
| ctx.scale = None |
| |
| assert input.dim() == 4 |
| |
| ctx.scale = ctx.scale or input.new() |
| output = input.new() |
| |
| batch_size = input.size(0) |
| channels = input.size(1) |
| input_height = input.size(2) |
| input_width = input.size(3) |
| |
| output.resize_as_(input) |
| ctx.scale.resize_as_(input) |
| |
| # use output storage as temporary buffer |
| input_square = output |
| torch.pow(input, 2, out=input_square) |
| |
| pre_pad = int((ctx.size - 1) / 2 + 1) |
| pre_pad_crop = channels if pre_pad > channels else pre_pad |
| |
| scale_first = ctx.scale.select(1, 0) |
| scale_first.zero_() |
| # compute first feature map normalization |
| for c in range(pre_pad_crop): |
| scale_first.add_(input_square.select(1, c)) |
| |
| # reuse computations for next feature maps normalization |
| # by adding the next feature map and removing the previous |
| for c in range(1, channels): |
| scale_previous = ctx.scale.select(1, c - 1) |
| scale_current = ctx.scale.select(1, c) |
| scale_current.copy_(scale_previous) |
| if c < channels - pre_pad + 1: |
| square_next = input_square.select(1, c + pre_pad - 1) |
| scale_current.add_(square_next, alpha=1) |
| |
| if c > pre_pad: |
| square_previous = input_square.select(1, c - pre_pad) |
| scale_current.add_(square_previous, alpha=-1) |
| |
| ctx.scale.mul_(ctx.alpha / ctx.size).add_(ctx.k) |
| |
| torch.pow(ctx.scale, -ctx.beta, out=output) |
| output.mul_(input) |
| |
| ctx.save_for_backward(input, output) |
| return output |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| input, output = ctx.saved_tensors |
| grad_input = grad_output.new() |
| |
| batch_size = input.size(0) |
| channels = input.size(1) |
| input_height = input.size(2) |
| input_width = input.size(3) |
| |
| paddded_ratio = input.new(channels + ctx.size - 1, input_height, |
| input_width) |
| accum_ratio = input.new(input_height, input_width) |
| |
| cache_ratio_value = 2 * ctx.alpha * ctx.beta / ctx.size |
| inversePrePad = int(ctx.size - (ctx.size - 1) / 2) |
| |
| grad_input.resize_as_(input) |
| torch.pow(ctx.scale, -ctx.beta, out=grad_input).mul_(grad_output) |
| |
| paddded_ratio.zero_() |
| padded_ratio_center = paddded_ratio.narrow(0, inversePrePad, |
| channels) |
| for n in range(batch_size): |
| torch.mul(grad_output[n], output[n], out=padded_ratio_center) |
| padded_ratio_center.div_(ctx.scale[n]) |
| torch.sum( |
| paddded_ratio.narrow(0, 0, ctx.size - 1), 0, keepdim=False, out=accum_ratio) |
| for c in range(channels): |
| accum_ratio.add_(paddded_ratio[c + ctx.size - 1]) |
| grad_input[n][c].addcmul_(input[n][c], accum_ratio, value=-cache_ratio_value) |
| accum_ratio.add_(paddded_ratio[c], alpha=-1) |
| |
| return grad_input, None, None, None, None |