| ## @package onnx |
| #Module caffe2.python.onnx.onnxifi |
| |
| """ |
| ONNXIFI a Caffe2 net |
| """ |
| |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from caffe2.proto import caffe2_pb2 |
| from caffe2.python import core, workspace |
| import caffe2.python._import_c_extension as C |
| import numpy as np |
| |
| |
| def _infer_shapes(pred_net, inputs): |
| workspace.RunNetOnce(pred_net) |
| hints = {} |
| for op in pred_net.op: |
| for o in op.output: |
| if o not in hints: |
| blob = workspace.FetchBlob(o) |
| if hasattr(blob, 'shape'): |
| hints[o] = blob.shape |
| for i in op.input: |
| if i not in hints: |
| blob = workspace.FetchBlob(i) |
| if hasattr(blob, 'shape'): |
| hints[i] = blob.shape |
| |
| return hints |
| |
| |
| def onnxifi_caffe2_net( |
| pred_net, |
| input_shapes, |
| populate_shapes=False, |
| debug=False): |
| """ |
| Transfrom the caffe2_net by collapsing ONNXIFI-runnable nodes into Onnxifi c2 ops |
| """ |
| # Hacky way to infer shapes as not all our operators have shape inference function. |
| # Normally this is not needed |
| shape_hints = {} |
| if populate_shapes: |
| input_data = {} |
| for k, v in input_shapes.items(): |
| input_data[k] = np.random.randn(*v).astype(np.float32) |
| shape_hints = _infer_shapes(pred_net, input_data) |
| |
| for k, v in input_shapes.items(): |
| shape_hints[k] = v |
| pred_net_str = C.onnxifi(pred_net.SerializeToString(), |
| shape_hints, |
| debug) |
| pred_net_cut = caffe2_pb2.NetDef() |
| pred_net_cut.ParseFromString(pred_net_str) |
| return pred_net_cut |