| #ifndef CAFFE2_OPERATORS_AFFINE_CHANNEL_OP_H_ |
| #define CAFFE2_OPERATORS_AFFINE_CHANNEL_OP_H_ |
| |
| #include <string> |
| |
| #include "caffe2/core/context.h" |
| #include "caffe2/core/logging.h" |
| #include "caffe2/core/operator.h" |
| #include "caffe2/utils/math.h" |
| |
| namespace caffe2 { |
| |
| template <typename T, class Context> |
| class AffineChannelOp final : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| |
| AffineChannelOp(const OperatorDef& operator_def, Workspace* ws) |
| : Operator<Context>(operator_def, ws), |
| order_(StringToStorageOrder( |
| OperatorBase::GetSingleArgument<std::string>("order", "NCHW"))), |
| OP_SINGLE_ARG(bool, "is_learnable", is_learnable_, false) { |
| CAFFE_ENFORCE_NE(order_, StorageOrder::UNKNOWN); |
| } |
| |
| bool RunOnDevice() override { |
| return order_ == StorageOrder::NCHW ? RunOnDeviceWithOrderNCHW() |
| : RunOnDeviceWithOrderNHWC(); |
| } |
| |
| bool RunOnDeviceWithOrderNCHW() { |
| const auto& X = Input(0); |
| const auto& scale = Input(1); |
| const auto& bias = Input(2); |
| auto* Y = Output(0); |
| if (is_learnable_) { |
| CAFFE_ENFORCE_NE( |
| Y, |
| &X, |
| "In-place affine_channel_op is not supported when " |
| "is_learnable = true."); |
| } |
| const int N = X.dim32(0); |
| const int C = X.dim32(1); |
| const int HxW = X.size() / (N * C); |
| const std::array<int, 3> X_dims = {N, C, HxW}; |
| const std::array<int, 3> scale_dims = {1, C, 1}; |
| Y->ResizeLike(X); |
| math::Mul<T, Context>( |
| 3, |
| X_dims.data(), |
| 3, |
| scale_dims.data(), |
| X.template data<T>(), |
| scale.template data<T>(), |
| Y->template mutable_data<T>(), |
| &context_); |
| math::Add<T, Context>( |
| 3, |
| X_dims.data(), |
| 3, |
| scale_dims.data(), |
| Y->template data<T>(), |
| bias.template data<T>(), |
| Y->template mutable_data<T>(), |
| &context_); |
| return true; |
| } |
| |
| bool RunOnDeviceWithOrderNHWC() { |
| const auto& X = Input(0); |
| const auto& scale = Input(1); |
| const auto& bias = Input(2); |
| auto* Y = Output(0); |
| if (is_learnable_) { |
| CAFFE_ENFORCE_NE( |
| Y, |
| &X, |
| "In-place affine_channel_op is not supported when " |
| "is_learnable = true."); |
| } |
| const int ndim = X.ndim(); |
| const int C = X.dim32(ndim - 1); |
| const int rows = X.size() / C; |
| const int cols = C; |
| Y->ResizeLike(X); |
| math::RowwiseMul<T, Context>( |
| rows, |
| cols, |
| X.template data<T>(), |
| scale.template data<T>(), |
| Y->template mutable_data<T>(), |
| &context_); |
| math::RowwiseAdd<T, Context>( |
| rows, |
| cols, |
| Y->template data<T>(), |
| bias.template data<T>(), |
| Y->template mutable_data<T>(), |
| &context_); |
| return true; |
| } |
| |
| private: |
| const StorageOrder order_; |
| const bool is_learnable_; |
| }; |
| |
| template <typename T, class Context> |
| class AffineChannelGradientOp final : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| |
| AffineChannelGradientOp(const OperatorDef& def, Workspace* ws) |
| : Operator<Context>(def, ws), |
| order_(StringToStorageOrder( |
| OperatorBase::GetSingleArgument<std::string>("order", "NCHW"))), |
| OP_SINGLE_ARG(bool, "is_learnable", is_learnable_, false) { |
| CAFFE_ENFORCE_NE(order_, StorageOrder::UNKNOWN); |
| } |
| |
| bool RunOnDevice() override { |
| return order_ == StorageOrder::NCHW ? RunOnDeviceWithOrderNCHW() |
| : RunOnDeviceWithOrderNHWC(); |
| } |
| |
| bool RunOnDeviceWithOrderNCHW(); |
| |
| bool RunOnDeviceWithOrderNHWC(); |
| |
| private: |
| const StorageOrder order_; |
| const bool is_learnable_; |
| }; |
| |
| } // namespace caffe2 |
| |
| #endif // CAFFE2_OPERATORS_AFFINE_CHANNEL_OP_H_ |