blob: 18d03dded276ed2da9b6dd036df1016efdc2d6bd [file] [log] [blame]
#ifndef CAFFE2_OPERATORS_AFFINE_CHANNEL_OP_H_
#define CAFFE2_OPERATORS_AFFINE_CHANNEL_OP_H_
#include <string>
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context>
class AffineChannelOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
AffineChannelOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
order_(StringToStorageOrder(
OperatorBase::GetSingleArgument<std::string>("order", "NCHW"))),
OP_SINGLE_ARG(bool, "is_learnable", is_learnable_, false) {
CAFFE_ENFORCE_NE(order_, StorageOrder::UNKNOWN);
}
bool RunOnDevice() override {
return order_ == StorageOrder::NCHW ? RunOnDeviceWithOrderNCHW()
: RunOnDeviceWithOrderNHWC();
}
bool RunOnDeviceWithOrderNCHW() {
const auto& X = Input(0);
const auto& scale = Input(1);
const auto& bias = Input(2);
auto* Y = Output(0);
if (is_learnable_) {
CAFFE_ENFORCE_NE(
Y,
&X,
"In-place affine_channel_op is not supported when "
"is_learnable = true.");
}
const int N = X.dim32(0);
const int C = X.dim32(1);
const int HxW = X.size() / (N * C);
const std::array<int, 3> X_dims = {N, C, HxW};
const std::array<int, 3> scale_dims = {1, C, 1};
Y->ResizeLike(X);
math::Mul<T, Context>(
3,
X_dims.data(),
3,
scale_dims.data(),
X.template data<T>(),
scale.template data<T>(),
Y->template mutable_data<T>(),
&context_);
math::Add<T, Context>(
3,
X_dims.data(),
3,
scale_dims.data(),
Y->template data<T>(),
bias.template data<T>(),
Y->template mutable_data<T>(),
&context_);
return true;
}
bool RunOnDeviceWithOrderNHWC() {
const auto& X = Input(0);
const auto& scale = Input(1);
const auto& bias = Input(2);
auto* Y = Output(0);
if (is_learnable_) {
CAFFE_ENFORCE_NE(
Y,
&X,
"In-place affine_channel_op is not supported when "
"is_learnable = true.");
}
const int ndim = X.ndim();
const int C = X.dim32(ndim - 1);
const int rows = X.size() / C;
const int cols = C;
Y->ResizeLike(X);
math::RowwiseMul<T, Context>(
rows,
cols,
X.template data<T>(),
scale.template data<T>(),
Y->template mutable_data<T>(),
&context_);
math::RowwiseAdd<T, Context>(
rows,
cols,
Y->template data<T>(),
bias.template data<T>(),
Y->template mutable_data<T>(),
&context_);
return true;
}
private:
const StorageOrder order_;
const bool is_learnable_;
};
template <typename T, class Context>
class AffineChannelGradientOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
AffineChannelGradientOp(const OperatorDef& def, Workspace* ws)
: Operator<Context>(def, ws),
order_(StringToStorageOrder(
OperatorBase::GetSingleArgument<std::string>("order", "NCHW"))),
OP_SINGLE_ARG(bool, "is_learnable", is_learnable_, false) {
CAFFE_ENFORCE_NE(order_, StorageOrder::UNKNOWN);
}
bool RunOnDevice() override {
return order_ == StorageOrder::NCHW ? RunOnDeviceWithOrderNCHW()
: RunOnDeviceWithOrderNHWC();
}
bool RunOnDeviceWithOrderNCHW();
bool RunOnDeviceWithOrderNHWC();
private:
const StorageOrder order_;
const bool is_learnable_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_AFFINE_CHANNEL_OP_H_