blob: 708eae6b2a071c26379f74a5339ac3305a2c0129 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import caffe2.python._import_c_extension as C
from caffe2.python import core
from caffe2.proto import caffe2_pb2
import os
from subprocess import Popen, PIPE
import errno
class NNModule(object):
def __init__(self, net=None):
if net is not None:
if isinstance(net, core.Net):
self._NNModule = C.NNModuleFromProtobuf(net.Proto().SerializeToString())
elif isinstance(net, caffe2_pb2.NetDef):
self._NNModule = C.NNModuleFromProtobuf(net.SerializeToString())
else:
raise Exception(
"NNModule can be constructed with core.Net or caffe2_pb2.NetDef types"
)
else:
self._NNModule = C.NNModule()
@property
def dataFlow(self):
return self._NNModule.dataFlow()
def convertToCaffe2Proto(self, old_proto=None):
if not old_proto:
old_proto = caffe2_pb2.NetDef()
output = self._NNModule.convertToCaffe2Proto(old_proto)
new_proto = caffe2_pb2.NetDef()
new_proto.ParseFromString(output)
return new_proto
def match(self, pattern):
for n in self.dataFlow.getMutableNodes():
m = C.matchSubgraph(n, pattern)
if m:
yield m
def render(s):
s = str(s)
cmd_exists = lambda x: any(
os.access(os.path.join(path, x), os.X_OK)
for path in os.environ["PATH"].split(os.pathsep)
)
if cmd_exists("graph-easy"):
p = Popen("graph-easy", stdin=PIPE)
try:
p.stdin.write(s.encode("utf-8"))
except IOError as e:
if e.errno == errno.EPIPE or e.errno == errno.EINVAL:
pass
else:
# Raise any other error.
raise
p.stdin.close()
p.wait()
else:
print(s)
NeuralNetOperator = C.NeuralNetOperator
NeuralNetData = C.NeuralNetData
NNSubgraph = C.NNSubgraph
NNMatchGraph = C.NNMatchGraph
Graph = C.Graph