| from numbers import Number |
| import math |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.uniform import Uniform |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import AffineTransform, ExpTransform |
| from torch.distributions.utils import _finfo, broadcast_all |
| |
| euler_constant = 0.57721566490153286060 # Euler Mascheroni Constant |
| |
| |
| class Gumbel(TransformedDistribution): |
| r""" |
| Samples from a Gumbel Distribution. |
| |
| Examples:: |
| |
| >>> m = Gumbel(torch.tensor([1.0]), torch.tensor([2.0])) |
| >>> m.sample() # sample from Gumbel distribution with loc=1, scale=2 |
| tensor([ 1.0124]) |
| |
| Args: |
| loc (float or Tensor): Location parameter of the distribution |
| scale (float or Tensor): Scale parameter of the distribution |
| """ |
| arg_constraints = {'loc': constraints.real, 'scale': constraints.positive} |
| support = constraints.real |
| |
| def __init__(self, loc, scale, validate_args=None): |
| self.loc, self.scale = broadcast_all(loc, scale) |
| finfo = _finfo(self.loc) |
| if isinstance(loc, Number) and isinstance(scale, Number): |
| base_dist = Uniform(finfo.tiny, 1 - finfo.eps) |
| else: |
| base_dist = Uniform(torch.full_like(self.loc, finfo.tiny), |
| torch.full_like(self.loc, 1 - finfo.eps)) |
| transforms = [ExpTransform().inv, AffineTransform(loc=0, scale=-torch.ones_like(self.scale)), |
| ExpTransform().inv, AffineTransform(loc=loc, scale=-self.scale)] |
| super(Gumbel, self).__init__(base_dist, transforms, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Gumbel, _instance) |
| new.loc = self.loc.expand(batch_shape) |
| new.scale = self.scale.expand(batch_shape) |
| return super(Gumbel, self).expand(batch_shape, _instance=new) |
| |
| @property |
| def mean(self): |
| return self.loc + self.scale * euler_constant |
| |
| @property |
| def stddev(self): |
| return (math.pi / math.sqrt(6)) * self.scale |
| |
| @property |
| def variance(self): |
| return self.stddev.pow(2) |
| |
| def entropy(self): |
| return self.scale.log() + (1 + euler_constant) |