blob: c32779b3a2825e82d18a57bdeea76c47707e4284 [file] [log] [blame]
"""
For procedural tests needed for __torch_function__, we use this function
to export method names and signatures as needed by the tests in
test/test_overrides.py.
python -m tools.autograd.gen_annotated_fn_args \
aten/src/ATen/native/native_functions.yaml \
aten/src/ATen/native/tags.yaml \
$OUTPUT_DIR \
tools/autograd
Where $OUTPUT_DIR is where you would like the files to be
generated. In the full build system, OUTPUT_DIR is
torch/testing/_internal/generated
"""
from __future__ import annotations
import argparse
import os
import textwrap
from collections import defaultdict
from typing import Any, Sequence, TYPE_CHECKING
import torchgen.api.python as python
from torchgen.context import with_native_function
from torchgen.gen import parse_native_yaml
from torchgen.utils import FileManager
from .gen_python_functions import (
is_py_fft_function,
is_py_linalg_function,
is_py_nn_function,
is_py_special_function,
is_py_torch_function,
is_py_variable_method,
should_generate_py_binding,
)
if TYPE_CHECKING:
from torchgen.model import Argument, BaseOperatorName, NativeFunction
def gen_annotated(
native_yaml_path: str, tags_yaml_path: str, out: str, autograd_dir: str
) -> None:
native_functions = parse_native_yaml(
native_yaml_path, tags_yaml_path
).native_functions
mappings = (
(is_py_torch_function, "torch._C._VariableFunctions"),
(is_py_nn_function, "torch._C._nn"),
(is_py_linalg_function, "torch._C._linalg"),
(is_py_special_function, "torch._C._special"),
(is_py_fft_function, "torch._C._fft"),
(is_py_variable_method, "torch.Tensor"),
)
annotated_args: list[str] = []
for pred, namespace in mappings:
groups: dict[BaseOperatorName, list[NativeFunction]] = defaultdict(list)
for f in native_functions:
if not should_generate_py_binding(f) or not pred(f):
continue
groups[f.func.name.name].append(f)
for group in groups.values():
for f in group:
annotated_args.append(f"{namespace}.{gen_annotated_args(f)}")
template_path = os.path.join(autograd_dir, "templates")
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
fm.write_with_template(
"annotated_fn_args.py",
"annotated_fn_args.py.in",
lambda: {
"annotated_args": textwrap.indent("\n".join(annotated_args), " "),
},
)
@with_native_function
def gen_annotated_args(f: NativeFunction) -> str:
def _get_kwargs_func_exclusion_list() -> list[str]:
# functions that currently don't work with kwargs in test_overrides.py
return [
"diagonal",
"round_",
"round",
"scatter_",
]
def _add_out_arg(
out_args: list[dict[str, Any]], args: Sequence[Argument], *, is_kwarg_only: bool
) -> None:
for arg in args:
if arg.default is not None:
continue
out_arg: dict[str, Any] = {}
out_arg["is_kwarg_only"] = str(is_kwarg_only)
out_arg["name"] = arg.name
out_arg["simple_type"] = python.argument_type_str(
arg.type, simple_type=True
)
size_t = python.argument_type_size(arg.type)
if size_t:
out_arg["size"] = size_t
out_args.append(out_arg)
out_args: list[dict[str, Any]] = []
_add_out_arg(out_args, f.func.arguments.flat_positional, is_kwarg_only=False)
if f"{f.func.name.name}" not in _get_kwargs_func_exclusion_list():
_add_out_arg(out_args, f.func.arguments.flat_kwarg_only, is_kwarg_only=True)
return f"{f.func.name.name}: {repr(out_args)},"
def main() -> None:
parser = argparse.ArgumentParser(description="Generate annotated_fn_args script")
parser.add_argument(
"native_functions", metavar="NATIVE", help="path to native_functions.yaml"
)
parser.add_argument("tags", metavar="TAGS", help="path to tags.yaml")
parser.add_argument("out", metavar="OUT", help="path to output directory")
parser.add_argument(
"autograd", metavar="AUTOGRAD", help="path to template directory"
)
args = parser.parse_args()
gen_annotated(args.native_functions, args.tags, args.out, args.autograd)
if __name__ == "__main__":
main()