| import re |
| import torch |
| from ..utils import is_per_tensor, is_per_channel |
| |
| from torch.fx import GraphModule, map_arg |
| |
| from torch.fx.graph import ( |
| Graph, |
| Node, |
| ) |
| |
| from typing import Callable, Optional, List, Dict, Any, Set |
| |
| # turn foo.bar -> ['foo', 'bar'] |
| def _parent_name(target): |
| r = target.rsplit('.', 1) |
| if len(r) == 1: |
| return '', r[0] |
| else: |
| return r[0], r[1] |
| |
| def graph_pretty_str(g, shorten=True) -> str: |
| """Returns a printable representation of the ops in the graph of g. |
| If shorten is True, tries to abbreviate fields. |
| """ |
| built_in_func_re = re.compile('<built-in function (.*)>') |
| built_in_meth_re = re.compile('<built-in method (.*) of type.*>') |
| op_dict = { |
| 'placeholder': 'plchdr', |
| 'get_attr': 'gt_prm', |
| 'call_function': 'cl_fun', |
| 'call_module': 'cl_mod', |
| 'call_method': 'cl_meth', |
| } |
| |
| max_lens = {} |
| col_names = ("name", "op", "target", "args", "kwargs") |
| for s in col_names: |
| max_lens[s] = len(s) |
| |
| results = [] |
| for n in g.nodes: |
| |
| # activation_post_process_0 -> obs_0 |
| name = str(n.name) |
| if shorten: |
| name = name.replace("activation_post_process", "obs") |
| |
| op = str(n.op) |
| # placeholder -> plchdr, and so on |
| if shorten and op in op_dict: |
| op = op_dict[op] |
| |
| target = str(n.target) |
| # <built-in function foo> -> <bi_fun foo>, and so on |
| if shorten: |
| built_in_func = built_in_func_re.search(target) |
| if built_in_func: |
| target = f"<bi_fun {built_in_func.group(1)}>" |
| built_in_meth = built_in_meth_re.search(target) |
| if built_in_meth: |
| target = f"<bi_meth {built_in_meth.group(1)}>" |
| target = target.replace("activation_post_process", "obs") |
| |
| args = str(n.args) |
| if shorten: |
| args = args.replace("activation_post_process", "obs") |
| |
| kwargs = str(n.kwargs) |
| |
| # calculate maximum length of each column, so we can tabulate properly |
| for k, v in zip(col_names, (name, op, target, args, kwargs)): |
| max_lens[k] = max(max_lens[k], len(v)) |
| results.append([name, op, target, args, kwargs]) |
| |
| res_str = "" |
| format_str = "{:<{name}} {:<{op}} {:<{target}} {:<{args}} {:<{kwargs}}\n" |
| res_str += format_str.format(*col_names, **max_lens) |
| for result in results: |
| res_str += format_str.format(*result, **max_lens) |
| |
| # print an exra note on abbreviations which change attribute names, |
| # since users will have to un-abbreviate for further debugging |
| if shorten: |
| res_str += "*obs_{n} = activation_post_process_{n}\n" |
| return res_str |
| |
| def get_per_tensor_qparams(activation_post_process): |
| assert is_per_tensor(activation_post_process.qscheme), 'Only per tensor quantization is supported' |
| scale, zero_point = activation_post_process.calculate_qparams() |
| scale = float(scale) |
| zero_point = int(zero_point) |
| dtype = activation_post_process.dtype |
| return scale, zero_point, dtype |
| |
| def get_quantize_op_and_qparams(activation_post_process): |
| ''' Given an activation_post_process module, |
| return quantize op(e.g. quantize_per_tensor) and a dictionary |
| of extracted qparams from the module |
| ''' |
| scale, zero_point = activation_post_process.calculate_qparams() |
| dtype = activation_post_process.dtype |
| if is_per_channel(activation_post_process.qscheme): |
| ch_axis = int(activation_post_process.ch_axis) |
| qparams = {'_scale_': scale, '_zero_point_': zero_point, '_axis_': ch_axis, '_dtype_': dtype} |
| quantize_op = torch.quantize_per_channel |
| else: |
| scale = float(scale) |
| zero_point = int(zero_point) |
| qparams = {'_scale_': scale, '_zero_point_': zero_point, '_dtype_': dtype} |
| quantize_op = torch.quantize_per_tensor # type: ignore |
| return quantize_op, qparams |
| |
| def quantize_node(root_module, graph, node, activation_post_process): |
| ''' Add quantization nodes for given node to graph |
| with the qparams calculated from activation_post_process module |
| e.g. Given input `node` in `node = self.conv(x)`, insert node: |
| `quantized_node = torch.quantize_per_tensor(x, self._scale_0, self._zer_point_0, self._dtype_0)` |
| where self._scale_0, self._zero_point_0 and self._dtype_0 are |
| calculated from `activation_post_process` |
| ''' |
| def module_has_qparams_attr_with_index(module, qparams, i): |
| for name in qparams.keys(): |
| if hasattr(module, name + str(i)): |
| return True |
| return False |
| |
| def get_next_qparams_idx(module, qparams): |
| idx = 0 |
| while module_has_qparams_attr_with_index(module, qparams, idx): |
| idx += 1 |
| return idx |
| |
| quantize_op, qparams = get_quantize_op_and_qparams(activation_post_process) |
| idx = get_next_qparams_idx(root_module, qparams) |
| inputs = [node] |
| for key, value in qparams.items(): |
| setattr(root_module, key + str(idx), value) |
| qparam_full_path = key + str(idx) |
| inputs.append(graph.create_node('get_attr', qparam_full_path)) |
| return graph.create_node('call_function', quantize_op, tuple(inputs), {}) |
| |
| def get_custom_module_class_keys(custom_config_dict, custom_config_dict_key) -> List[Any]: |
| r""" Get all the unique custom module keys in the custom config dict |
| e.g. |
| Input: |
| custom_config_dict = { |
| "float_to_observed_custom_module_class": { |
| "static": { |
| CustomModule1: ObservedCustomModule |
| }, |
| "dynamic": { |
| CustomModule2: DynamicObservedCustomModule |
| }, |
| "weight_only": { |
| CustomModule3: WeightOnlyObservedCustomModule |
| }, |
| }, |
| } |
| |
| Output: |
| # extract all the keys in "static", "dynamic" and "weight_only" dict |
| [CustomModule1, CustomModule2, CustomModule3] |
| """ |
| # using set to dedup |
| float_custom_module_classes : Set[Any] = set() |
| custom_module_mapping = custom_config_dict.get(custom_config_dict_key, {}) |
| for quant_mode in ["static", "dynamic", "weight_only"]: |
| quant_mode_custom_module_config = custom_module_mapping.get(quant_mode, {}) |
| quant_mode_custom_module_classes = set(quant_mode_custom_module_config.keys()) |
| float_custom_module_classes |= quant_mode_custom_module_classes |
| return list(float_custom_module_classes) |
| |
| def get_linear_prepack_op_for_dtype(dtype): |
| if dtype == torch.float16: |
| return torch.ops.quantized.linear_prepack_fp16 |
| elif dtype == torch.qint8: |
| return torch.ops.quantized.linear_prepack |
| else: |
| raise Exception("can't get linear prepack op for dtype:", dtype) |
| |
| # Returns a function that can get a new attribute name for module with given |
| # prefix, for example, |
| # >> get_new_observer_name = get_new_attr_name_with_prefix('_observer') |
| # >> new_name = get_new_observer_name(module) |
| # new_name will be an unused attribute name on module, e.g. `_observer_1` |
| def get_new_attr_name_with_prefix(prefix: str) -> Callable: |
| def get_new_attr_name(module: torch.nn.Module): |
| def get_attr_name(i: int): |
| return prefix + str(i) |
| i = 0 |
| attr_name = get_attr_name(i) |
| while hasattr(module, attr_name): |
| i += 1 |
| attr_name = get_attr_name(i) |
| return attr_name |
| return get_new_attr_name |
| |
| def collect_producer_nodes(node: Node) -> Optional[List[Node]]: |
| r''' Starting from a target node, trace back until we hit inpu or |
| getattr node. This is used to extract the chain of operators |
| starting from getattr to the target node, for example |
| def forward(self, x): |
| observed = self.observer(self.weight) |
| return F.linear(x, observed) |
| collect_producer_nodes(observed) will either return a list of nodes that |
| produces the observed node or None if we can't extract a self contained |
| graph without free variables(inputs of the forward function). |
| ''' |
| nodes = [node] |
| frontier = [node] |
| while frontier: |
| node = frontier.pop() |
| all_args = list(node.args) + list(node.kwargs.values()) |
| for arg in all_args: |
| if not isinstance(arg, Node): |
| continue |
| if arg.op == 'placeholder': |
| # hit input, can't fold in this case |
| return None |
| nodes.append(arg) |
| if not (arg.op == 'call_function' and arg.target == getattr): |
| frontier.append(arg) |
| return nodes |
| |
| def graph_module_from_producer_nodes( |
| root: GraphModule, producer_nodes: List[Node]) -> GraphModule: |
| r''' Construct a graph module from extracted producer nodes |
| from `collect_producer_nodes` function |
| Args: |
| root: the root module for the original graph |
| producer_nodes: a list of nodes we use to construct the graph |
| Return: |
| A graph module constructed from the producer nodes |
| ''' |
| assert len(producer_nodes) > 0, 'list of producer nodes can not be empty' |
| # since we traced back from node to getattrr |
| producer_nodes.reverse() |
| graph = Graph() |
| env: Dict[Any, Any] = {} |
| |
| def load_arg(a): |
| return map_arg(a, lambda node: env[node]) |
| for producer_node in producer_nodes: |
| env[producer_node] = graph.node_copy(producer_node, load_arg) |
| graph.output(load_arg(producer_nodes[-1])) |
| graph_module = GraphModule(root, graph) |
| return graph_module |
| |
| def assert_and_get_unique_device(module: torch.nn.Module) -> Any: |
| """ |
| Returns the unique device for a module, or None if no device is found. |
| Throws an error if multiple devices are detected. |
| """ |
| devices = {p.device for p in module.parameters()} | \ |
| {p.device for p in module.buffers()} |
| assert len(devices) <= 1, ( |
| "prepare only works with cpu or single-device CUDA modules, " |
| "but got devices {}".format(devices) |
| ) |
| device = next(iter(devices)) if len(devices) > 0 else None |
| return device |