| # coding=utf-8 |
| r"""Quantized convolution modules.""" |
| |
| from typing import Optional, List, TypeVar |
| |
| import torch |
| import torch.nn as nn |
| import torch.nn.functional as F |
| import torch.nn.intrinsic as nni |
| import torch.nn.intrinsic.qat as nniqat |
| |
| from torch._ops import ops |
| from torch.nn.common_types import _size_1_t |
| from torch.nn.modules.utils import _single, _pair, _triple |
| from torch.nn.quantized.modules.utils import _quantize_weight, WeightedQuantizedModule |
| from torch.nn.utils import fuse_conv_bn_weights |
| |
| __all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d'] |
| |
| _SUPPORTED_PADDING = { |
| 'zeros', |
| 'reflect' |
| } |
| |
| |
| def _reverse_repeat_padding(padding: List[int]) -> List[int]: |
| _reversed_padding_repeated_twice: List[int] = [] |
| N = len(padding) |
| for idx in range(N): |
| for _ in range(2): |
| _reversed_padding_repeated_twice.append(padding[N - idx - 1]) |
| return _reversed_padding_repeated_twice |
| |
| class _ConvNd(WeightedQuantizedModule): |
| def __init__(self, in_channels, out_channels, kernel_size, stride=1, |
| padding=0, dilation=1, groups=1, bias=True, |
| padding_mode='zeros', device=None, dtype=None): |
| # All subclasses have this signature - See PR #49702s |
| raise NotImplementedError |
| |
| def _init(self, in_channels, out_channels, kernel_size, stride, |
| padding, dilation, |
| transposed, output_padding, |
| groups, bias, |
| padding_mode='zeros', |
| device=None, |
| dtype=None) -> None: |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| super(_ConvNd, self).__init__() |
| |
| if in_channels % groups != 0: |
| raise ValueError('in_channels must be divisible by groups') |
| if out_channels % groups != 0: |
| raise ValueError('out_channels must be divisible by groups') |
| self.in_channels = in_channels |
| self.out_channels = out_channels |
| self.kernel_size = kernel_size |
| self.stride = stride |
| self.padding = padding |
| self.dilation = dilation |
| self.transposed = transposed |
| self.output_padding = output_padding |
| self.groups = groups |
| if padding_mode not in _SUPPORTED_PADDING: |
| raise ValueError("'padding_mode' {} is not supported by quantized convolution".format(padding_mode)) |
| self.padding_mode = padding_mode |
| # Initialize as NCHW. set_weight will internally transpose to NHWC. |
| if self.transposed: |
| weight_shape = [in_channels, out_channels // self.groups] |
| else: |
| weight_shape = [out_channels, in_channels // self.groups] |
| qweight = torch._empty_affine_quantized( |
| weight_shape + list(kernel_size), |
| scale=1, zero_point=0, dtype=torch.qint8, |
| **{k: v for k, v in factory_kwargs.items() if k != 'dtype'}) |
| bias_float = ( |
| torch.zeros(out_channels, dtype=torch.float, |
| **{k: v for k, v in factory_kwargs.items() if k != 'dtype'}) if bias else None) |
| |
| self.set_weight_bias(qweight, bias_float) |
| self.scale = 1.0 |
| self.zero_point = 0 |
| |
| def set_weight_bias(self, qweight, bias_float): |
| raise NotImplementedError |
| |
| def bias(self): |
| raise NotImplementedError |
| |
| def _weight_bias(self): |
| raise NotImplementedError |
| |
| def extra_repr(self): |
| s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}' |
| ', stride={stride}, scale={scale}, zero_point={zero_point}') |
| if self.padding != (0,) * len(self.padding): |
| s += ', padding={padding}' |
| if self.dilation != (1,) * len(self.dilation): |
| s += ', dilation={dilation}' |
| if self.output_padding != (0,) * len(self.output_padding): |
| s += ', output_padding={output_padding}' |
| if self.groups != 1: |
| s += ', groups={groups}' |
| if self.bias() is None: |
| s += ', bias=False' |
| return s.format(**self.__dict__) |
| |
| # ===== Serialization methods ===== |
| # The special consideration here is that we have to unpack the weights into |
| # their regular QTensor form for serialization. Packed weights should not |
| # live outside the process in which they were created, rather they should be |
| # derived from the QTensor weight. |
| # self |
| # |--- weight : Tensor |
| # |--- bias : Tensor |
| # |
| # TODO: maybe change to this when https://github.com/pytorch/pytorch/pull/32958 is landed |
| # self |
| # |--- _packed_params : Conv2dPackedParamsBase or Conv3dPackedParamsBase |
| def _save_to_state_dict(self, destination, prefix, keep_vars): |
| super(_ConvNd, self)._save_to_state_dict(destination, prefix, keep_vars) |
| (w, b) = self._weight_bias() |
| destination[prefix + 'weight'] = w |
| destination[prefix + 'bias'] = b |
| destination[prefix + 'scale'] = torch.tensor(self.scale) |
| destination[prefix + 'zero_point'] = torch.tensor(self.zero_point) |
| |
| @torch.jit.export |
| def __getstate__(self): |
| (w, b) = self._weight_bias() |
| return ( |
| self.in_channels, |
| self.out_channels, |
| self.kernel_size, |
| self.stride, |
| self.padding, |
| self.dilation, |
| self.transposed, |
| self.output_padding, |
| self.groups, |
| self.padding_mode, |
| w, |
| b, |
| self.scale, |
| self.zero_point, |
| self.training |
| ) |
| |
| # ===== Deserialization methods ===== |
| # Counterpart to the serialization methods, we must pack the serialized |
| # QTensor weight into its packed format for use by the FBGEMM ops. |
| def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, |
| missing_keys, unexpected_keys, error_msgs): |
| self.set_weight_bias( |
| state_dict[prefix + 'weight'], state_dict[prefix + 'bias']) |
| state_dict.pop(prefix + 'weight') |
| state_dict.pop(prefix + 'bias') |
| self.scale = float(state_dict[prefix + 'scale']) |
| state_dict.pop(prefix + 'scale') |
| self.zero_point = int(state_dict[prefix + 'zero_point']) |
| state_dict.pop(prefix + 'zero_point') |
| super(_ConvNd, self)._load_from_state_dict( |
| state_dict, prefix, local_metadata, False, missing_keys, |
| unexpected_keys, error_msgs) |
| |
| @torch.jit.export |
| def __setstate__(self, state): |
| self.in_channels = state[0] |
| self.out_channels = state[1] |
| self.kernel_size = state[2] |
| self.stride = state[3] |
| self.padding = state[4] |
| self.dilation = state[5] |
| self.transposed = state[6] |
| self.output_padding = state[7] |
| self.groups = state[8] |
| self.padding_mode = state[9] |
| self.set_weight_bias(state[10], state[11]) |
| self.scale = state[12] |
| self.zero_point = state[13] |
| self.training = state[14] |
| |
| def __deepcopy__(self, memo): |
| new_instance = type(self).__new__(type(self)) |
| torch.nn.Module.__init__(new_instance) |
| state = self.__getstate__() |
| new_instance.__setstate__(state) |
| return new_instance |
| |
| def __copy__(self): |
| return self.__deepcopy__({}) |
| |
| @classmethod |
| def get_qconv(cls, mod, activation_post_process, weight_post_process=None): |
| r"""Creates a qconv object and returns it. |
| """ |
| if weight_post_process is None: |
| weight_post_process = mod.qconfig.weight() |
| weight_post_process(mod.weight) |
| assert weight_post_process.dtype == torch.qint8, \ |
| 'Weight observer must have a dtype of qint8' |
| qweight = _quantize_weight(mod.weight.float(), weight_post_process) |
| # the __init__ call used is the one from derived classes and not the one from _ConvNd |
| qconv = cls(mod.in_channels, mod.out_channels, mod.kernel_size, |
| mod.stride, mod.padding, mod.dilation, mod.groups, |
| mod.bias is not None, mod.padding_mode) |
| qconv.set_weight_bias(qweight, mod.bias) |
| if activation_post_process is None or activation_post_process.dtype == torch.float: |
| return qconv # dynamic quantization doesn't need scale/zero_point |
| else: |
| act_scale, act_zp = activation_post_process.calculate_qparams() |
| qconv.scale = float(act_scale) |
| qconv.zero_point = int(act_zp) |
| return qconv |
| |
| @staticmethod |
| def from_float(cls, mod): |
| if hasattr(mod, "weight_fake_quant"): |
| # assert type(mod) == cls.__QAT_MODULE, " nnq." + cls.__name__ + \ |
| # ".from_float only works for " + cls.__QAT_MODULE.__name__ |
| if type(mod) == cls._NNIQAT_CONV_BN_MODULE: |
| mod.weight, mod.bias = fuse_conv_bn_weights( |
| mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var, |
| mod.bn.eps, mod.bn.weight, mod.bn.bias) |
| assert hasattr(mod, "activation_post_process"), \ |
| "Input QAT module must have observer attached" |
| weight_post_process = mod.weight_fake_quant |
| activation_post_process = mod.activation_post_process |
| else: |
| assert type(mod) == cls._FLOAT_MODULE, \ |
| " nnq." + cls.__name__ + ".from_float only works for " + \ |
| cls._FLOAT_MODULE.__name__ + " but got:" + str(type(mod)) |
| assert hasattr(mod, "qconfig"), \ |
| "Input float module must have qconfig defined." |
| activation_post_process = None if not hasattr( |
| mod, "activation_post_process") else mod.activation_post_process |
| if type(mod) == cls._NNI_CONV_RELU_MODULE: |
| mod = mod[0] |
| weight_post_process = mod.qconfig.weight() |
| return cls.get_qconv(mod, activation_post_process, weight_post_process) |
| |
| @classmethod |
| def from_reference(cls, ref_qconv, output_scale, output_zero_point): |
| r"""Create a (fbgemm/qnnpack) quantized module from a reference quantized module |
| Args: |
| ref_module (Module): a reference quantized module, either produced by torch.ao.quantization |
| utilities or provided by the user |
| output_scale (float): scale for output Tensor |
| output_zero_point (int): zero point for output Tensor |
| """ |
| qconv = cls( |
| ref_qconv.in_channels, |
| ref_qconv.out_channels, |
| ref_qconv.kernel_size, # type: ignore[arg-type] |
| ref_qconv.stride, # type: ignore[arg-type] |
| ref_qconv.padding, # type: ignore[arg-type] |
| ref_qconv.dilation, # type: ignore[arg-type] |
| ref_qconv.groups, |
| ref_qconv.bias is not None, # type: ignore[arg-type] |
| ref_qconv.padding_mode, |
| device=ref_qconv.weight.device, |
| dtype=ref_qconv.weight.dtype) |
| qweight = ref_qconv.get_quantized_weight() |
| qconv.set_weight_bias(qweight, ref_qconv.bias) |
| qconv.scale = float(output_scale) |
| qconv.zero_point = int(output_zero_point) |
| return qconv |
| |
| class Conv1d(_ConvNd): |
| r"""Applies a 1D convolution over a quantized input signal composed of |
| several quantized input planes. |
| |
| For details on input arguments, parameters, and implementation see |
| :class:`~torch.nn.Conv1d`. |
| |
| .. note:: |
| Only `zeros` is supported for the :attr:`padding_mode` argument. |
| |
| .. note:: |
| Only `torch.quint8` is supported for the input data type. |
| |
| |
| Attributes: |
| weight (Tensor): packed tensor derived from the learnable weight |
| parameter. |
| scale (Tensor): scalar for the output scale |
| zero_point (Tensor): scalar for the output zero point |
| |
| See :class:`~torch.nn.Conv1d` for other attributes. |
| |
| Examples:: |
| |
| >>> m = nn.quantized.Conv1d(16, 33, 3, stride=2) |
| >>> input = torch.randn(20, 16, 100) |
| >>> # quantize input to quint8 |
| >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, |
| dtype=torch.quint8) |
| >>> output = m(q_input) |
| |
| """ |
| |
| _FLOAT_MODULE = nn.Conv1d |
| _NNIQAT_CONV_BN_MODULE = nniqat.ConvBn1d |
| _NNI_CONV_RELU_MODULE = nni.ConvReLU1d |
| |
| def __init__(self, |
| in_channels: int, |
| out_channels: int, |
| kernel_size: _size_1_t, |
| stride: _size_1_t = 1, |
| padding: _size_1_t = 0, |
| dilation: _size_1_t = 1, |
| groups: int = 1, |
| bias: bool = True, |
| padding_mode: str = 'zeros', |
| device=None, |
| dtype=None): |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| kernel_size = _single(kernel_size) |
| stride = _single(stride) |
| padding = padding if isinstance(padding, str) else _single(padding) |
| dilation = _single(dilation) |
| |
| # Subclasses of _ConvNd needs to call _init rather than __init__. See |
| # discussion on PR #49702 |
| super(Conv1d, self)._init( |
| in_channels, out_channels, kernel_size, stride, padding, dilation, |
| False, _single(0), groups, bias, padding_mode, **factory_kwargs) |
| |
| def _get_name(self): |
| return 'QuantizedConv1d' |
| |
| def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: |
| if self.padding_mode == 'zeros': |
| self._packed_params = torch.ops.quantized.conv1d_prepack( |
| w, b, self.stride, self.padding, self.dilation, self.groups) |
| else: |
| self._packed_params = torch.ops.quantized.conv1d_prepack( |
| w, b, self.stride, _pair(0), self.dilation, |
| self.groups) |
| |
| def _weight_bias(self): |
| w, b = torch.ops.quantized.conv1d_unpack(self._packed_params) |
| return w, b |
| |
| def weight(self): |
| return self._weight_bias()[0] |
| |
| def bias(self): |
| return self._weight_bias()[1] |
| |
| def forward(self, input): |
| # Temporarily using len(shape) instead of ndim due to JIT issue |
| # https://github.com/pytorch/pytorch/issues/23890 |
| if len(input.shape) != 3: |
| raise ValueError("Input shape must be `(N, C, L)`!") |
| if self.padding_mode != 'zeros': |
| # Padding in Conv1d is stored as (p, p), need to get (p,) |
| _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding[:1]) |
| input = F.pad(input, _reversed_padding_repeated_twice, |
| mode=self.padding_mode) |
| return ops.quantized.conv1d(input, self._packed_params, self.scale, self.zero_point) |
| |
| @classmethod |
| def from_float(cls, mod): |
| r"""Creates a quantized module from a float module or qparams_dict. |
| |
| Args: |
| mod (Module): a float module, either produced by torch.ao.quantization |
| utilities or provided by the user |
| """ |
| return _ConvNd.from_float(cls, mod) |
| |
| |
| class Conv2d(_ConvNd): |
| r"""Applies a 2D convolution over a quantized input signal composed of |
| several quantized input planes. |
| |
| For details on input arguments, parameters, and implementation see |
| :class:`~torch.nn.Conv2d`. |
| |
| .. note:: |
| Only `zeros` is supported for the :attr:`padding_mode` argument. |
| |
| .. note:: |
| Only `torch.quint8` is supported for the input data type. |
| |
| |
| Attributes: |
| weight (Tensor): packed tensor derived from the learnable weight |
| parameter. |
| scale (Tensor): scalar for the output scale |
| zero_point (Tensor): scalar for the output zero point |
| |
| See :class:`~torch.nn.Conv2d` for other attributes. |
| |
| Examples:: |
| |
| >>> # With square kernels and equal stride |
| >>> m = nn.quantized.Conv2d(16, 33, 3, stride=2) |
| >>> # non-square kernels and unequal stride and with padding |
| >>> m = nn.quantized.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) |
| >>> # non-square kernels and unequal stride and with padding and dilation |
| >>> m = nn.quantized.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) |
| >>> input = torch.randn(20, 16, 50, 100) |
| >>> # quantize input to quint8 |
| >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) |
| >>> output = m(q_input) |
| |
| """ |
| _FLOAT_MODULE = nn.Conv2d |
| _NNIQAT_CONV_BN_MODULE = nniqat.ConvBn2d |
| _NNI_CONV_RELU_MODULE = nni.ConvReLU2d |
| |
| def __init__(self, in_channels, out_channels, kernel_size, stride=1, |
| padding=0, dilation=1, groups=1, bias=True, |
| padding_mode='zeros', device=None, dtype=None): |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| kernel_size = _pair(kernel_size) |
| stride = _pair(stride) |
| padding = _pair(padding) |
| dilation = _pair(dilation) |
| # Subclasses of _ConvNd need to call _init rather than __init__. See |
| # discussion on PR #49702 |
| super(Conv2d, self)._init( |
| in_channels, out_channels, kernel_size, stride, padding, dilation, |
| False, _pair(0), groups, bias, padding_mode, **factory_kwargs) |
| |
| def _get_name(self): |
| return 'QuantizedConv2d' |
| |
| def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: |
| if self.padding_mode == 'zeros': |
| self._packed_params = torch.ops.quantized.conv2d_prepack( |
| w, b, self.stride, self.padding, self.dilation, self.groups) |
| else: |
| self._packed_params = torch.ops.quantized.conv2d_prepack( |
| w, b, self.stride, _pair(0), self.dilation, self.groups) |
| |
| def _weight_bias(self): |
| return self._packed_params.unpack() |
| |
| def weight(self): |
| return self._weight_bias()[0] |
| |
| def bias(self): |
| return self._weight_bias()[1] |
| |
| def forward(self, input): |
| # Temporarily using len(shape) instead of ndim due to JIT issue |
| # https://github.com/pytorch/pytorch/issues/23890 |
| if len(input.shape) != 4: |
| raise ValueError("Input shape must be `(N, C, H, W)`!") |
| if self.padding_mode != 'zeros': |
| _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding) |
| input = F.pad(input, _reversed_padding_repeated_twice, |
| mode=self.padding_mode) |
| return ops.quantized.conv2d( |
| input, self._packed_params, self.scale, self.zero_point) |
| |
| @classmethod |
| def from_float(cls, mod): |
| r"""Creates a quantized module from a float module or qparams_dict. |
| |
| Args: |
| mod (Module): a float module, either produced by torch.ao.quantization |
| utilities or provided by the user |
| """ |
| return _ConvNd.from_float(cls, mod) |
| |
| |
| class Conv3d(_ConvNd): |
| r"""Applies a 3D convolution over a quantized input signal composed of |
| several quantized input planes. |
| |
| For details on input arguments, parameters, and implementation see |
| :class:`~torch.nn.Conv3d`. |
| |
| .. note:: |
| Only `zeros` is supported for the :attr:`padding_mode` argument. |
| |
| .. note:: |
| Only `torch.quint8` is supported for the input data type. |
| |
| |
| Attributes: |
| weight (Tensor): packed tensor derived from the learnable weight |
| parameter. |
| scale (Tensor): scalar for the output scale |
| zero_point (Tensor): scalar for the output zero point |
| |
| See :class:`~torch.nn.Conv3d` for other attributes. |
| |
| Examples:: |
| |
| >>> # With square kernels and equal stride |
| >>> m = nn.quantized.Conv3d(16, 33, 3, stride=2) |
| >>> # non-square kernels and unequal stride and with padding |
| >>> m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2)) |
| >>> # non-square kernels and unequal stride and with padding and dilation |
| >>> m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2), dilation=(1, 2, 2)) |
| >>> input = torch.randn(20, 16, 56, 56, 56) |
| >>> # quantize input to quint8 |
| >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) |
| >>> output = m(q_input) |
| |
| """ |
| _FLOAT_MODULE = nn.Conv3d |
| _NNIQAT_CONV_BN_MODULE = nniqat.ConvBn3d |
| _NNI_CONV_RELU_MODULE = nni.ConvReLU3d |
| |
| def __init__(self, in_channels, out_channels, kernel_size, stride=1, |
| padding=0, dilation=1, groups=1, bias=True, |
| padding_mode='zeros', device=None, dtype=None): |
| assert padding_mode != 'reflect', "Conv3d does not support reflection padding" |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| kernel_size = _triple(kernel_size) |
| stride = _triple(stride) |
| padding = _triple(padding) |
| dilation = _triple(dilation) |
| # Subclasses of _ConvNd need to call _init rather than __init__. See |
| # discussion on PR #49702 |
| super(Conv3d, self)._init( |
| in_channels, out_channels, kernel_size, stride, padding, dilation, |
| False, _triple(0), groups, bias, padding_mode, **factory_kwargs) |
| |
| def _get_name(self): |
| return 'QuantizedConv3d' |
| |
| def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: |
| if self.padding_mode == 'zeros': |
| self._packed_params = torch.ops.quantized.conv3d_prepack( |
| w, b, self.stride, self.padding, self.dilation, self.groups) |
| else: |
| self._packed_params = torch.ops.quantized.conv3d_prepack( |
| w, b, self.stride, _triple(0), self.dilation, self.groups) |
| |
| def _weight_bias(self): |
| return self._packed_params.unpack() |
| |
| def weight(self): |
| return self._weight_bias()[0] |
| |
| def bias(self): |
| return self._weight_bias()[1] |
| |
| def forward(self, input): |
| # Temporarily using len(shape) instead of ndim due to JIT issue |
| # https://github.com/pytorch/pytorch/issues/23890 |
| if len(input.shape) != 5: |
| raise ValueError("Input shape must be `(N, C, D, H, W)`!") |
| if self.padding_mode != 'zeros': |
| _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding) |
| input = F.pad(input, _reversed_padding_repeated_twice, |
| mode=self.padding_mode) |
| return ops.quantized.conv3d( |
| input, self._packed_params, self.scale, self.zero_point) |
| |
| @classmethod |
| def from_float(cls, mod): |
| r"""Creates a quantized module from a float module or qparams_dict. |
| |
| Args: |
| mod (Module): a float module, either produced by torch.ao.quantization |
| utilities or provided by the user |
| """ |
| return _ConvNd.from_float(cls, mod) |
| |
| # === Transposed Convolutions === |
| MOD = TypeVar('MOD', bound=nn.modules.conv._ConvNd) |
| |
| class _ConvTransposeNd(_ConvNd): |
| |
| _FLOAT_MODULE = MOD |
| |
| def __init__(self, in_channels, out_channels, kernel_size, stride, |
| padding, dilation, transposed, output_padding, |
| groups, bias, padding_mode, device=None, dtype=None): |
| if padding_mode != 'zeros': |
| raise ValueError('Only "zeros" padding mode is supported for {}'.format(self.__class__.__name__)) |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| # Subclasses of _ConvNd need to call _init rather than __init__. See |
| # discussion on PR #49702 |
| super(_ConvTransposeNd, self)._init( |
| in_channels, out_channels, kernel_size, stride, |
| padding, dilation, transposed, output_padding, |
| groups, bias, padding_mode, **factory_kwargs) |
| |
| def _input_padding(self, kernel_size: List[int], dilation: List[int], padding: List[int]) -> List[int]: |
| res = torch.jit.annotate(List[int], []) |
| for kdx in range(len(kernel_size)): |
| pad = (dilation[kdx] * (kernel_size[kdx] - 1) - padding[kdx]) |
| res.append(pad) |
| return res |
| |
| @classmethod |
| def from_float(cls, mod): |
| r"""Creates a quantized module from a float module or qparams_dict. |
| Args: |
| mod (Module): a float module, either produced by torch.ao.quantization |
| utilities or provided by the user |
| """ |
| # derived classes override cls._FLOAT_MODULE attribute |
| msg = ' nnq.' + cls.__name__ + '.from_float only works for ' + \ |
| cls._FLOAT_MODULE.__name__ # type: ignore[attr-defined] |
| assert type(mod) == cls._FLOAT_MODULE, msg |
| assert hasattr(mod, 'qconfig'), \ |
| 'Input float module must have qconfig defined.' |
| weight_post_process = mod.qconfig.weight() |
| weight_post_process(mod.weight) |
| assert weight_post_process.dtype == torch.qint8, \ |
| 'Weight observer must have a dtype of qint8' |
| qweight = _quantize_weight(mod.weight.float(), weight_post_process) |
| # the __init__ call used is the one from derived classes and not the one from _ConvTransposeNd |
| qconv = cls(mod.in_channels, mod.out_channels, mod.kernel_size, # type: ignore[call-arg] |
| mod.stride, mod.padding, mod.output_padding, mod.groups, |
| mod.bias is not None, mod.dilation, mod.padding_mode) |
| qconv.set_weight_bias(qweight, mod.bias) |
| if not hasattr(mod, "activation_post_process") or mod.activation_post_process.dtype == torch.float: |
| return qconv # dynamic quantization doesn't need scale/zero_point |
| else: |
| act_scale, act_zp = mod.activation_post_process.calculate_qparams() |
| qconv.scale = float(act_scale) |
| qconv.zero_point = int(act_zp) |
| return qconv |
| |
| @staticmethod |
| def from_reference(cls, ref_qconvt, output_scale, output_zero_point): |
| r"""Create a (fbgemm/qnnpack) quantized module from a reference quantized module |
| Args: |
| ref_module (Module): a reference quantized module, either produced by torch.ao.quantization |
| utilities or provided by the user |
| output_scale (float): scale for output Tensor |
| output_zero_point (int): zero point for output Tensor |
| """ |
| qconv = cls( |
| ref_qconvt.in_channels, |
| ref_qconvt.out_channels, |
| ref_qconvt.kernel_size, # type: ignore[arg-type] |
| ref_qconvt.stride, # type: ignore[arg-type] |
| ref_qconvt.padding, # type: ignore[arg-type] |
| ref_qconvt.output_padding, # type: ignore[arg-type] |
| ref_qconvt.groups, |
| ref_qconvt.bias is not None, # type: ignore[arg-type] |
| ref_qconvt.dilation, # type: ignore[arg-type] |
| ref_qconvt.padding_mode, |
| device=ref_qconvt.weight.device, |
| dtype=ref_qconvt.weight.dtype) |
| qweight = ref_qconvt.get_quantized_weight() |
| qconv.set_weight_bias(qweight, ref_qconvt.bias) |
| qconv.scale = float(output_scale) |
| qconv.zero_point = int(output_zero_point) |
| return qconv |
| |
| class ConvTranspose1d(_ConvTransposeNd): |
| r"""Applies a 1D transposed convolution operator over an input image |
| composed of several input planes. |
| For details on input arguments, parameters, and implementation see |
| :class:`~torch.nn.ConvTranspose1d`. |
| |
| .. note:: Currently only the QNNPACK engine is implemented. |
| Please, set the `torch.backends.quantized.engine = 'qnnpack'` |
| |
| For special notes, please, see :class:`~torch.nn.quantized.Conv1d` |
| |
| Attributes: |
| weight (Tensor): packed tensor derived from the learnable weight |
| parameter. |
| scale (Tensor): scalar for the output scale |
| zero_point (Tensor): scalar for the output zero point |
| See :class:`~torch.nn.ConvTranspose2d` for other attributes. |
| |
| Examples:: |
| |
| >>> torch.backends.quantized.engine = 'qnnpack' |
| >>> # With square kernels and equal stride |
| >>> m = nnq.ConvTranspose1d(16, 33, 3, stride=2) |
| >>> # non-square kernels and unequal stride and with padding |
| >>> m = nnq.ConvTranspose1d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) |
| >>> input = torch.randn(20, 16, 50) |
| >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) |
| >>> output = m(q_input) |
| >>> # exact output size can be also specified as an argument |
| >>> input = torch.randn(1, 16, 12) |
| >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) |
| >>> downsample = nnq.Conv1d(16, 16, 3, stride=2, padding=1) |
| >>> upsample = nnq.ConvTranspose1d(16, 16, 3, stride=2, padding=1) |
| >>> h = downsample(q_input) |
| >>> h.size() |
| torch.Size([1, 16, 6]) |
| >>> output = upsample(h, output_size=input.size()) |
| >>> output.size() |
| torch.Size([1, 16, 12]) |
| """ |
| |
| _FLOAT_MODULE = nn.ConvTranspose1d |
| |
| def __init__(self, in_channels, out_channels, kernel_size, stride=1, |
| padding=0, output_padding=0, groups=1, bias=True, |
| dilation=1, padding_mode='zeros', device=None, dtype=None): |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| kernel_size = _single(kernel_size) |
| stride = _single(stride) |
| padding = _single(padding) |
| dilation = _single(dilation) |
| output_padding = _single(output_padding) |
| |
| super(ConvTranspose1d, self).__init__( |
| in_channels, out_channels, kernel_size, stride, padding, dilation, |
| True, output_padding, groups, bias, padding_mode, **factory_kwargs) |
| |
| def _get_name(self): |
| return 'QuantizedConvTranpose1d' |
| |
| def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: |
| self._packed_params = torch.ops.quantized.conv_transpose1d_prepack( |
| w, b, self.stride, self.padding, self.output_padding, self.dilation, |
| self.groups) |
| |
| def _weight_bias(self): |
| w, b = torch.ops.quantized.conv_transpose1d_unpack(self._packed_params) |
| return w, b |
| |
| def weight(self): |
| (w, _) = self._weight_bias() |
| return w |
| |
| def bias(self): |
| (_, b) = self._weight_bias() |
| return b |
| |
| def forward(self, input): |
| # Temporarily using len(shape) instead of ndim due to JIT issue |
| # https://github.com/pytorch/pytorch/issues/23890 |
| if len(input.shape) != 3: |
| raise ValueError("Input shape must be `(N, C, L)`!") |
| return torch.ops.quantized.conv_transpose1d( |
| input, self._packed_params, self.scale, self.zero_point) |
| |
| @classmethod |
| def from_reference(cls, ref_qconvt, output_scale, output_zero_point): |
| return _ConvTransposeNd.from_reference(cls, ref_qconvt, output_scale, output_zero_point) |
| |
| |
| class ConvTranspose2d(_ConvTransposeNd): |
| r"""Applies a 2D transposed convolution operator over an input image |
| composed of several input planes. |
| For details on input arguments, parameters, and implementation see |
| :class:`~torch.nn.ConvTranspose2d`. |
| |
| For special notes, please, see :class:`~torch.nn.quantized.Conv2d` |
| |
| Attributes: |
| weight (Tensor): packed tensor derived from the learnable weight |
| parameter. |
| scale (Tensor): scalar for the output scale |
| zero_point (Tensor): scalar for the output zero point |
| See :class:`~torch.nn.ConvTranspose2d` for other attributes. |
| |
| Examples:: |
| |
| >>> # QNNPACK or FBGEMM as backend |
| >>> torch.backends.quantized.engine = 'qnnpack' |
| >>> # With square kernels and equal stride |
| >>> m = nnq.ConvTranspose2d(16, 33, 3, stride=2) |
| >>> # non-square kernels and unequal stride and with padding |
| >>> m = nnq.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) |
| >>> input = torch.randn(20, 16, 50, 100) |
| >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) |
| >>> output = m(q_input) |
| >>> # exact output size can be also specified as an argument |
| >>> input = torch.randn(1, 16, 12, 12) |
| >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) |
| >>> downsample = nnq.Conv2d(16, 16, 3, stride=2, padding=1) |
| >>> upsample = nnq.ConvTranspose2d(16, 16, 3, stride=2, padding=1) |
| >>> h = downsample(q_input) |
| >>> h.size() |
| torch.Size([1, 16, 6, 6]) |
| >>> output = upsample(h, output_size=input.size()) |
| >>> output.size() |
| torch.Size([1, 16, 12, 12]) |
| """ |
| |
| _FLOAT_MODULE = nn.ConvTranspose2d |
| |
| def __init__(self, in_channels, out_channels, kernel_size, stride=1, |
| padding=0, output_padding=0, groups=1, bias=True, |
| dilation=1, padding_mode='zeros', device=None, dtype=None): |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| kernel_size = _pair(kernel_size) |
| stride = _pair(stride) |
| padding = _pair(padding) |
| dilation = _pair(dilation) |
| output_padding = _pair(output_padding) |
| |
| super(ConvTranspose2d, self).__init__( |
| in_channels, out_channels, kernel_size, stride, padding, dilation, |
| True, output_padding, groups, bias, padding_mode, **factory_kwargs) |
| |
| def _get_name(self): |
| return 'QuantizedConvTranpose2d' |
| |
| def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: |
| self._packed_params = torch.ops.quantized.conv_transpose2d_prepack( |
| w, b, self.stride, self.padding, self.output_padding, self.dilation, |
| self.groups) |
| |
| def _weight_bias(self): |
| w, b = torch.ops.quantized.conv2d_unpack(self._packed_params) |
| return w, b |
| |
| def weight(self): |
| (w, _) = self._weight_bias() |
| return w |
| |
| def bias(self): |
| (_, b) = self._weight_bias() |
| return b |
| |
| def forward(self, input): |
| # Temporarily using len(shape) instead of ndim due to JIT issue |
| # https://github.com/pytorch/pytorch/issues/23890 |
| if len(input.shape) != 4: |
| raise ValueError("Input shape must be `(N, C, H, W)`!") |
| return ops.quantized.conv_transpose2d( |
| input, self._packed_params, self.scale, self.zero_point) |
| |
| @classmethod |
| def from_reference(cls, ref_qconvt, output_scale, output_zero_point): |
| return _ConvTransposeNd.from_reference(cls, ref_qconvt, output_scale, output_zero_point) |
| |
| class ConvTranspose3d(_ConvTransposeNd): |
| r"""Applies a 3D transposed convolution operator over an input image |
| composed of several input planes. |
| For details on input arguments, parameters, and implementation see |
| :class:`~torch.nn.ConvTranspose3d`. |
| |
| .. note:: Currently only the FBGEMM engine is implemented. |
| Please, set the `torch.backends.quantized.engine = 'fbgemm'` |
| |
| For special notes, please, see :class:`~torch.nn.quantized.Conv3d` |
| |
| Attributes: |
| weight (Tensor): packed tensor derived from the learnable weight |
| parameter. |
| scale (Tensor): scalar for the output scale |
| zero_point (Tensor): scalar for the output zero point |
| See :class:`~torch.nn.ConvTranspose3d` for other attributes. |
| |
| Examples:: |
| |
| >>> torch.backends.quantized.engine = 'fbgemm' |
| >>> # With cubic kernels and equal stride |
| >>> m = nnq.ConvTranspose3d(16, 33, 3, stride=2) |
| >>> # non-cubic kernels and unequal stride and with padding |
| >>> m = nnq.ConvTranspose3d(16, 33, (3, 3, 5), stride=(2, 1, 1), padding=(4, 2, 2)) |
| >>> input = torch.randn(20, 16, 50, 100, 100) |
| >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) |
| >>> output = m(q_input) |
| >>> # exact output size can be also specified as an argument |
| >>> input = torch.randn(1, 16, 12, 12, 12) |
| >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) |
| >>> downsample = nnq.Conv3d(16, 16, 3, stride=2, padding=1) |
| >>> upsample = nnq.ConvTranspose3d(16, 16, 3, stride=2, padding=1) |
| >>> h = downsample(q_input) |
| >>> h.size() |
| torch.Size([1, 16, 6, 6, 6]) |
| >>> output = upsample(h, output_size=input.size()) |
| >>> output.size() |
| torch.Size([1, 16, 12, 12, 12]) |
| """ |
| |
| _FLOAT_MODULE = nn.ConvTranspose3d |
| |
| def __init__(self, in_channels, out_channels, kernel_size, stride=1, |
| padding=0, output_padding=0, groups=1, bias=True, |
| dilation=1, padding_mode='zeros', device=None, dtype=None): |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| kernel_size = _triple(kernel_size) |
| stride = _triple(stride) |
| padding = _triple(padding) |
| dilation = _triple(dilation) |
| output_padding = _triple(output_padding) |
| |
| super(ConvTranspose3d, self).__init__( |
| in_channels, out_channels, kernel_size, stride, padding, dilation, |
| True, output_padding, groups, bias, padding_mode, **factory_kwargs) |
| |
| def _get_name(self): |
| return 'QuantizedConvTranpose3d' |
| |
| def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None: |
| self._packed_params = torch.ops.quantized.conv_transpose3d_prepack( |
| w, b, self.stride, self.padding, self.output_padding, self.dilation, |
| self.groups) |
| |
| def _weight_bias(self): |
| w, b = torch.ops.quantized.conv3d_unpack(self._packed_params) |
| return w, b |
| |
| def weight(self): |
| (w, _) = self._weight_bias() |
| return w |
| |
| def bias(self): |
| (_, b) = self._weight_bias() |
| return b |
| |
| def forward(self, input): |
| # Temporarily using len(shape) instead of ndim due to JIT issue |
| # https://github.com/pytorch/pytorch/issues/23890 |
| if len(input.shape) != 5: |
| raise ValueError("Input shape must be `(N, C, T, H, W)`!") |
| return ops.quantized.conv_transpose3d( |
| input, self._packed_params, self.scale, self.zero_point) |
| |
| @classmethod |
| def from_reference(cls, ref_qconvt, output_scale, output_zero_point): |
| return _ConvTransposeNd.from_reference(cls, ref_qconvt, output_scale, output_zero_point) |