| #include <catch.hpp> |
| |
| #include <torch/nn/module.h> |
| #include <torch/nn/modules/linear.h> |
| #include <torch/nn/modules/rnn.h> |
| #include <torch/tensor.h> |
| |
| using namespace torch::nn; |
| |
| using Catch::StartsWith; |
| |
| struct AGIUnit : torch::nn::Module {}; |
| |
| namespace test { |
| struct AGIUnit : torch::nn::Module {}; |
| struct AGIUnit2 : torch::nn::Module { |
| AGIUnit2() : torch::nn::Module("Foo") {} |
| }; |
| } // namespace test |
| |
| bool pointer_equal(torch::Tensor first, torch::Tensor second) { |
| return first.data().data<float>() == second.data().data<float>(); |
| } |
| |
| TEST_CASE("module/training-mode") { |
| Linear module(3, 4); |
| REQUIRE(module->is_training()); |
| SECTION("Enable eval mode") { |
| module->eval(); |
| REQUIRE(!module->is_training()); |
| } |
| SECTION("Enable train mode") { |
| module->train(); |
| REQUIRE(module->is_training()); |
| } |
| } |
| |
| TEST_CASE("module/zero-grad") { |
| Linear module(3, 4); |
| auto weight = torch::ones({8, 3}, at::requires_grad()); |
| auto loss = module->forward({weight}).front().sum(); |
| loss.backward(); |
| for (auto& parameter : module->parameters()) { |
| auto grad = parameter->grad(); |
| REQUIRE(grad.defined()); |
| REQUIRE(grad.sum().toCFloat() != 0); |
| } |
| module->zero_grad(); |
| for (auto& parameter : module->parameters()) { |
| auto grad = parameter->grad(); |
| REQUIRE(grad.defined()); |
| REQUIRE(grad.sum().toCFloat() == 0); |
| } |
| } |
| |
| TEST_CASE("module/name") { |
| // CHECK instead of REQUIRE because demangling may fail. |
| AGIUnit agi; |
| // Call it twice just to make sure there are no bugs in the lazy |
| // initialization semantics. |
| CHECK(agi.name() == "AGIUnit"); |
| CHECK(agi.name() == "AGIUnit"); |
| SECTION("correctly demangled") { |
| CHECK(test::AGIUnit().name() == "test::AGIUnit"); |
| CHECK(test::AGIUnit2().name() == "Foo"); |
| } |
| } |
| |
| TEST_CASE("module/conversions", "[cuda]") { |
| Linear module(128, 64); |
| SECTION("starts as float on CPU") { |
| for (auto& parameter : module->parameters()) { |
| REQUIRE(parameter->device() == at::Device(at::kCPU)); |
| REQUIRE(parameter->dtype() == torch::kFloat32); |
| } |
| } |
| SECTION("to(CUDA)") { |
| module->to({at::kCUDA, 0}); |
| for (auto& parameter : module->parameters()) { |
| REQUIRE(parameter->device().type() == at::Device::Type::CUDA); |
| REQUIRE(parameter->device().index() == 0); |
| } |
| module->cuda(1); |
| for (auto& parameter : module->parameters()) { |
| REQUIRE(parameter->device().type() == at::Device::Type::CUDA); |
| REQUIRE(parameter->device().index() == 1); |
| } |
| } |
| SECTION("to(CPU)") { |
| module->to(at::Device(at::kCPU)); |
| for (auto& parameter : module->parameters()) { |
| REQUIRE(parameter->device().type() == at::Device::Type::CPU); |
| } |
| } |
| SECTION("to(Int32)") { |
| module->to(torch::kInt32); |
| for (auto& parameter : module->parameters()) { |
| REQUIRE(parameter->dtype() == torch::kInt32); |
| } |
| } |
| SECTION("to(Float64)") { |
| module->to(torch::kFloat64); |
| for (auto& parameter : module->parameters()) { |
| REQUIRE(parameter->dtype() == torch::kFloat64); |
| } |
| } |
| SECTION("to(CUDA, Byte)") { |
| module->to(at::Device(at::kCUDA, 1), torch::kUInt8); |
| for (auto& parameter : module->parameters()) { |
| REQUIRE(parameter->device().type() == at::Device::Type::CUDA); |
| REQUIRE(parameter->device().index() == 1); |
| } |
| for (auto& parameter : module->parameters()) { |
| REQUIRE(parameter->dtype() == torch::kUInt8); |
| } |
| } |
| } |
| |
| TEST_CASE("module/clone") { |
| SECTION( |
| "a module that does not override clone() throws when clone() is called") { |
| struct UnCloneable : Module {}; |
| UnCloneable module; |
| REQUIRE_THROWS_WITH( |
| module.clone(), StartsWith("clone() has not been implemented")); |
| } |
| |
| SECTION( |
| "a module that overrides clone() does not throw when clone() is called ") { |
| struct Cloneable : Module { |
| std::shared_ptr<Module> clone() const override { |
| return nullptr; |
| } |
| }; |
| Cloneable module; |
| REQUIRE_NOTHROW(module.clone()); |
| } |
| |
| SECTION("Cloning creates distinct parameters") { |
| struct TestModule : public Cloneable<TestModule> { |
| void reset() override { |
| l1 = register_module("l1", Linear(10, 3)); |
| l2 = register_module("l2", Linear(3, 5)); |
| l3 = register_module("l3", Linear(5, 100)); |
| buffer = register_buffer("buf", torch::ones({2, 2})); |
| } |
| |
| Linear l1, l2, l3; |
| torch::Tensor buffer; |
| }; |
| |
| auto module = TestModule().build(); |
| |
| auto module2 = module->clone(); |
| auto params1 = module->parameters(); |
| auto params2 = module2->parameters(); |
| REQUIRE(params1.size() == 6); |
| REQUIRE(params2.size() == 6); |
| for (auto& param : params1) { |
| REQUIRE(!pointer_equal(param.value, params2[param.key])); |
| REQUIRE(param->allclose(params2[param.key])); |
| param->data().mul_(2); |
| } |
| for (auto& param : params1) { |
| REQUIRE(!param->allclose(params2[param.key])); |
| } |
| |
| auto buffers1 = module->buffers(); |
| auto buffers2 = module2->buffers(); |
| REQUIRE(buffers1.size() == 1); |
| REQUIRE(buffers2.size() == 1); |
| for (auto& buffer : buffers1) { |
| REQUIRE(!pointer_equal(buffer.value, buffers2[buffer.key])); |
| REQUIRE(buffer->allclose(buffers2[buffer.key])); |
| buffer->data().mul_(2); |
| } |
| for (auto& buffer : buffers1) { |
| REQUIRE(!buffer->allclose(buffers2[buffer.key])); |
| } |
| } |
| |
| SECTION("Cloning preserves external references") { |
| struct TestModule : public Cloneable<TestModule> { |
| void reset() override { |
| weight = register_parameter("weight", torch::ones({4, 4})); |
| } |
| torch::Tensor weight; |
| }; |
| auto module = TestModule().build(); |
| module->weight.data() += 1; |
| REQUIRE(pointer_equal(module->weight, module->parameters()["weight"])); |
| REQUIRE(module->weight.allclose(module->parameters()["weight"])); |
| |
| auto module2 = std::dynamic_pointer_cast<TestModule>( |
| std::shared_ptr<Module>(module->clone())); |
| REQUIRE(!pointer_equal(module2->weight, module->weight)); |
| REQUIRE(pointer_equal(module2->weight, module2->parameters()["weight"])); |
| REQUIRE(module2->weight.allclose(module2->parameters()["weight"])); |
| REQUIRE(module2->weight.allclose(module->weight)); |
| REQUIRE(!pointer_equal(module2->weight, module->parameters()["weight"])); |
| } |
| |
| SECTION("Cloning copies the values of variables of submodules") { |
| struct TestModule : public Cloneable<TestModule> { |
| void reset() override { |
| weight = register_parameter("weight", torch::ones({4, 4})); |
| } |
| |
| torch::Tensor weight; |
| int value = 0; |
| }; |
| struct NestedModule : public Cloneable<NestedModule> { |
| void reset() override { |
| module = register_module("module", TestModule().build()); |
| } |
| std::shared_ptr<TestModule> module; |
| }; |
| |
| auto a = NestedModule().build(); |
| a->module->weight.data() += 1; |
| a->module->value = 123; |
| |
| auto b = std::static_pointer_cast<NestedModule>(a->clone()); |
| |
| REQUIRE(!pointer_equal(b->module->weight, a->module->weight)); |
| REQUIRE( |
| pointer_equal(b->module->weight, b->module->parameters()["weight"])); |
| REQUIRE(b->module->parameters()["weight"].allclose(a->module->weight)); |
| REQUIRE(b->module->weight.allclose(a->module->weight)); |
| REQUIRE(b->module->value == a->module->value); |
| } |
| } |
| |
| TEST_CASE("module/parameters") { |
| struct TestModule : Module { |
| TestModule() { |
| a = register_parameter("a", torch::zeros({2, 2})); |
| b = register_parameter("b", torch::ones({2, 2})); |
| c = register_parameter("c", torch::ones({2, 2}) * 2); |
| } |
| |
| torch::Tensor a, b, c; |
| }; |
| |
| TestModule module; |
| |
| SECTION("has correct number of parameters") { |
| REQUIRE(module.parameters().size() == 3); |
| } |
| |
| SECTION("contains parameters with the correct name") { |
| auto parameters = module.parameters(); |
| REQUIRE(parameters.contains("a")); |
| REQUIRE(parameters.contains("b")); |
| REQUIRE(parameters.contains("c")); |
| } |
| } |
| |
| TEST_CASE("module/buffers") { |
| struct TestModule : Module { |
| TestModule() { |
| a = register_buffer("a", torch::zeros({2, 2})); |
| b = register_buffer("b", torch::ones({2, 2})); |
| c = register_buffer("c", torch::ones({2, 2}) * 2); |
| } |
| |
| torch::Tensor a, b, c; |
| }; |
| |
| TestModule module; |
| |
| SECTION("has correct number of buffers") { |
| REQUIRE(module.buffers().size() == 3); |
| } |
| |
| SECTION("contains buffers with the correct name") { |
| auto buffers = module.buffers(); |
| REQUIRE(buffers.contains("a")); |
| REQUIRE(buffers.contains("b")); |
| REQUIRE(buffers.contains("c")); |
| } |
| } |