blob: 6e0f8871db15e8551b03c3dfadd4ca412101a743 [file] [log] [blame]
#include <catch.hpp>
#include <torch/nn/module.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/modules/rnn.h>
#include <torch/tensor.h>
using namespace torch::nn;
using Catch::StartsWith;
struct AGIUnit : torch::nn::Module {};
namespace test {
struct AGIUnit : torch::nn::Module {};
struct AGIUnit2 : torch::nn::Module {
AGIUnit2() : torch::nn::Module("Foo") {}
};
} // namespace test
bool pointer_equal(torch::Tensor first, torch::Tensor second) {
return first.data().data<float>() == second.data().data<float>();
}
TEST_CASE("module/training-mode") {
Linear module(3, 4);
REQUIRE(module->is_training());
SECTION("Enable eval mode") {
module->eval();
REQUIRE(!module->is_training());
}
SECTION("Enable train mode") {
module->train();
REQUIRE(module->is_training());
}
}
TEST_CASE("module/zero-grad") {
Linear module(3, 4);
auto weight = torch::ones({8, 3}, at::requires_grad());
auto loss = module->forward({weight}).front().sum();
loss.backward();
for (auto& parameter : module->parameters()) {
auto grad = parameter->grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() != 0);
}
module->zero_grad();
for (auto& parameter : module->parameters()) {
auto grad = parameter->grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() == 0);
}
}
TEST_CASE("module/name") {
// CHECK instead of REQUIRE because demangling may fail.
AGIUnit agi;
// Call it twice just to make sure there are no bugs in the lazy
// initialization semantics.
CHECK(agi.name() == "AGIUnit");
CHECK(agi.name() == "AGIUnit");
SECTION("correctly demangled") {
CHECK(test::AGIUnit().name() == "test::AGIUnit");
CHECK(test::AGIUnit2().name() == "Foo");
}
}
TEST_CASE("module/conversions", "[cuda]") {
Linear module(128, 64);
SECTION("starts as float on CPU") {
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device() == at::Device(at::kCPU));
REQUIRE(parameter->dtype() == torch::kFloat32);
}
}
SECTION("to(CUDA)") {
module->to({at::kCUDA, 0});
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device().type() == at::Device::Type::CUDA);
REQUIRE(parameter->device().index() == 0);
}
module->cuda(1);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device().type() == at::Device::Type::CUDA);
REQUIRE(parameter->device().index() == 1);
}
}
SECTION("to(CPU)") {
module->to(at::Device(at::kCPU));
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device().type() == at::Device::Type::CPU);
}
}
SECTION("to(Int32)") {
module->to(torch::kInt32);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->dtype() == torch::kInt32);
}
}
SECTION("to(Float64)") {
module->to(torch::kFloat64);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->dtype() == torch::kFloat64);
}
}
SECTION("to(CUDA, Byte)") {
module->to(at::Device(at::kCUDA, 1), torch::kUInt8);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device().type() == at::Device::Type::CUDA);
REQUIRE(parameter->device().index() == 1);
}
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->dtype() == torch::kUInt8);
}
}
}
TEST_CASE("module/clone") {
SECTION(
"a module that does not override clone() throws when clone() is called") {
struct UnCloneable : Module {};
UnCloneable module;
REQUIRE_THROWS_WITH(
module.clone(), StartsWith("clone() has not been implemented"));
}
SECTION(
"a module that overrides clone() does not throw when clone() is called ") {
struct Cloneable : Module {
std::shared_ptr<Module> clone() const override {
return nullptr;
}
};
Cloneable module;
REQUIRE_NOTHROW(module.clone());
}
SECTION("Cloning creates distinct parameters") {
struct TestModule : public Cloneable<TestModule> {
void reset() override {
l1 = register_module("l1", Linear(10, 3));
l2 = register_module("l2", Linear(3, 5));
l3 = register_module("l3", Linear(5, 100));
buffer = register_buffer("buf", torch::ones({2, 2}));
}
Linear l1, l2, l3;
torch::Tensor buffer;
};
auto module = TestModule().build();
auto module2 = module->clone();
auto params1 = module->parameters();
auto params2 = module2->parameters();
REQUIRE(params1.size() == 6);
REQUIRE(params2.size() == 6);
for (auto& param : params1) {
REQUIRE(!pointer_equal(param.value, params2[param.key]));
REQUIRE(param->allclose(params2[param.key]));
param->data().mul_(2);
}
for (auto& param : params1) {
REQUIRE(!param->allclose(params2[param.key]));
}
auto buffers1 = module->buffers();
auto buffers2 = module2->buffers();
REQUIRE(buffers1.size() == 1);
REQUIRE(buffers2.size() == 1);
for (auto& buffer : buffers1) {
REQUIRE(!pointer_equal(buffer.value, buffers2[buffer.key]));
REQUIRE(buffer->allclose(buffers2[buffer.key]));
buffer->data().mul_(2);
}
for (auto& buffer : buffers1) {
REQUIRE(!buffer->allclose(buffers2[buffer.key]));
}
}
SECTION("Cloning preserves external references") {
struct TestModule : public Cloneable<TestModule> {
void reset() override {
weight = register_parameter("weight", torch::ones({4, 4}));
}
torch::Tensor weight;
};
auto module = TestModule().build();
module->weight.data() += 1;
REQUIRE(pointer_equal(module->weight, module->parameters()["weight"]));
REQUIRE(module->weight.allclose(module->parameters()["weight"]));
auto module2 = std::dynamic_pointer_cast<TestModule>(
std::shared_ptr<Module>(module->clone()));
REQUIRE(!pointer_equal(module2->weight, module->weight));
REQUIRE(pointer_equal(module2->weight, module2->parameters()["weight"]));
REQUIRE(module2->weight.allclose(module2->parameters()["weight"]));
REQUIRE(module2->weight.allclose(module->weight));
REQUIRE(!pointer_equal(module2->weight, module->parameters()["weight"]));
}
SECTION("Cloning copies the values of variables of submodules") {
struct TestModule : public Cloneable<TestModule> {
void reset() override {
weight = register_parameter("weight", torch::ones({4, 4}));
}
torch::Tensor weight;
int value = 0;
};
struct NestedModule : public Cloneable<NestedModule> {
void reset() override {
module = register_module("module", TestModule().build());
}
std::shared_ptr<TestModule> module;
};
auto a = NestedModule().build();
a->module->weight.data() += 1;
a->module->value = 123;
auto b = std::static_pointer_cast<NestedModule>(a->clone());
REQUIRE(!pointer_equal(b->module->weight, a->module->weight));
REQUIRE(
pointer_equal(b->module->weight, b->module->parameters()["weight"]));
REQUIRE(b->module->parameters()["weight"].allclose(a->module->weight));
REQUIRE(b->module->weight.allclose(a->module->weight));
REQUIRE(b->module->value == a->module->value);
}
}
TEST_CASE("module/parameters") {
struct TestModule : Module {
TestModule() {
a = register_parameter("a", torch::zeros({2, 2}));
b = register_parameter("b", torch::ones({2, 2}));
c = register_parameter("c", torch::ones({2, 2}) * 2);
}
torch::Tensor a, b, c;
};
TestModule module;
SECTION("has correct number of parameters") {
REQUIRE(module.parameters().size() == 3);
}
SECTION("contains parameters with the correct name") {
auto parameters = module.parameters();
REQUIRE(parameters.contains("a"));
REQUIRE(parameters.contains("b"));
REQUIRE(parameters.contains("c"));
}
}
TEST_CASE("module/buffers") {
struct TestModule : Module {
TestModule() {
a = register_buffer("a", torch::zeros({2, 2}));
b = register_buffer("b", torch::ones({2, 2}));
c = register_buffer("c", torch::ones({2, 2}) * 2);
}
torch::Tensor a, b, c;
};
TestModule module;
SECTION("has correct number of buffers") {
REQUIRE(module.buffers().size() == 3);
}
SECTION("contains buffers with the correct name") {
auto buffers = module.buffers();
REQUIRE(buffers.contains("a"));
REQUIRE(buffers.contains("b"));
REQUIRE(buffers.contains("c"));
}
}