| from .module import Module |
| from typing import Any, Union, List |
| from ... import Tensor, Size |
| from .. import Parameter |
| |
| |
| class LocalResponseNorm(Module): |
| size: int = ... |
| alpha: float = ... |
| beta: float = ... |
| k: float = ... |
| |
| def __init__(self, size: int, alpha: float = ..., beta: float = ..., k: float = ...) -> None: ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class CrossMapLRN2d(Module): |
| size: int = ... |
| alpha: float = ... |
| beta: float = ... |
| k: float = ... |
| |
| def __init__(self, size: int, alpha: float = ..., beta: float = ..., k: float = ...) -> None: ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| _shape_t = Union[int, List[int], Size] |
| |
| |
| class LayerNorm(Module): |
| normalized_shape: _shape_t = ... |
| eps: float = ... |
| elementwise_affine: bool = ... |
| weight: Parameter = ... |
| bias: Parameter = ... |
| |
| def __init__(self, normalized_shape: _shape_t, eps: float = ..., elementwise_affine: bool = ...) -> None: ... |
| |
| def reset_parameters(self) -> None: ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class GroupNorm(Module): |
| num_groups: int = ... |
| num_channels: int = ... |
| eps: float = ... |
| affine: bool = ... |
| weight: Parameter = ... |
| bias: Parameter = ... |
| |
| def __init__(self, num_groups: int, num_channels: int, eps: float = ..., affine: bool = ...) -> None: ... |
| |
| def reset_parameters(self) -> None: ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |