blob: 60db9e3d07e40472831af8b3be67c60733b8f38e [file] [log] [blame]
#include <torch/csrc/jit/mobile/function.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/custom_class_detail.h>
namespace torch {
namespace jit {
char const* toString(OpCode op);
namespace mobile {
Function::Function(c10::QualifiedName name)
: name_(std::move(name)), code_(std::make_shared<Code>()) {}
const c10::QualifiedName& Function::qualname() const {
return name_;
}
const std::string& Function::name() const {
return name_.name();
}
void Function::append_instruction(OpCode op, int X, int N, int64_t dbg_handle) {
TORCH_CHECK(
isOpSupportedInMobile(op),
toString(op),
" is not supported in mobile module.");
code_->instructions_.emplace_back(op, X, N);
code_->debug_handles_.emplace_back(dbg_handle);
}
bool Function::append_operator(
const std::string& name,
const std::string& overload_name,
int64_t model_version) {
// Keep the original opname in code_
code_->op_names_.emplace_back(name, overload_name);
auto opname = code_->op_names_.back();
const auto& opname_c10 = opname;
std::function<void(Stack&)> fn;
auto jit_op = findOperatorFor(opname);
if (jit_op) {
fn = [jit_op](Stack& stack) { jit_op->getOperation()(&stack); };
} else {
auto op = c10::Dispatcher::singleton().findSchema(opname_c10);
if (op.has_value()) {
fn = [op](Stack& stack) { op->callBoxed(&stack); };
} else {
return false;
}
}
if (model_version == 0x3LL &&
opname == c10::OperatorName("aten::_convolution", "")) {
// Since byte-code versions 0x4L, convolution has an additional
// default-value argument (allow_tf32=True, see
// https://github.com/pytorch/pytorch/pull/40737). This wrapper handles
// backward compatibility with models of byte-code version <= 0x3L, where
// this bool argument does not yet exist.
fn = [fn](Stack& stack) {
stack.push_back(true);
fn(stack);
};
}
code_->operators_.emplace_back(fn);
return true;
}
void Function::set_module_debug_info_list_size(size_t size) {
pc_to_module_debug_info_.resize(size);
for (size_t i = 0; i < size; ++i) {
pc_to_module_debug_info_[i] = "<no module info>";
}
}
void Function::set_module_info(const std::string& module_info, size_t pc) {
TORCH_CHECK(
pc < pc_to_module_debug_info_.size(),
"Module debug info index out of boundary.");
pc_to_module_debug_info_[pc] = module_info;
}
void Function::append_constant(const c10::IValue& constant) {
code_->constants_.push_back(constant);
}
void Function::append_type(const at::TypePtr& type) {
code_->types_.push_back(type);
}
void Function::set_register_size(size_t size) {
code_->register_size_ = size;
}
std::string Function::get_module_debug_info(size_t pc) const {
TORCH_CHECK(
pc < pc_to_module_debug_info_.size(),
"Module debug info index out of boundary.");
return pc_to_module_debug_info_[pc];
}
void Function::setSchema(c10::FunctionSchema schema) {
schema_ = std::move(schema);
}
const at::optional<c10::FunctionSchema>& Function::getSchema() const {
return schema_;
}
bool Function::run(Stack& stack) const {
const auto& schema = getSchema();
if (schema) { // if we have a schema then resolve optional args if any
schema->checkAndNormalizeInputs(
stack, std::unordered_map<std::string, IValue>{} /*kwargs*/);
}
InterpreterState interp_state(code_);
return interp_state.run(stack);
}
c10::IValue Function::operator()(Stack& stack) const {
run(stack);
return stack.front();
}
const std::shared_ptr<Code> Function::get_code() const {
return code_;
}
int64_t Function::getExceptionDebugHandle() const {
size_t pc = getInterpretersExceptionPC();
return (pc < code_->debug_handles_.size()) ? code_->debug_handles_[pc] : -1;
}
} // namespace mobile
} // namespace jit
} // namespace torch