| import torch |
| import torch.onnx.symbolic_helper as sym_help |
| |
| from torch.onnx.symbolic_helper import parse_args, _unimplemented |
| from torch.onnx.symbolic_helper import _black_list_in_opset |
| |
| |
| # EDITING THIS FILE? READ THIS FIRST! |
| # see Note [Edit Symbolic Files] in symbolic_helper.py |
| |
| # This file exports ONNX ops for opset 11 |
| |
| black_listed_operators = [ |
| "eq", "ne", "sort", "topk", "hardtanh" |
| ] |
| |
| for black_listed_op in black_listed_operators: |
| vars()[black_listed_op] = _black_list_in_opset(black_listed_op) |
| |
| |
| def clamp(g, self, min, max): |
| dtype = self.type().scalarType() |
| |
| def _cast_if_not_none(tensor, dtype): |
| if tensor is not None and not tensor.node().mustBeNone(): |
| return g.op("Cast", tensor, to_i=sym_help.cast_pytorch_to_onnx[dtype]) |
| else: |
| return tensor |
| |
| if dtype is not None: |
| min = _cast_if_not_none(min, dtype) |
| max = _cast_if_not_none(max, dtype) |
| return g.op("Clip", self, min, max) |
| |
| |
| @parse_args('v', 'i') |
| def pixel_shuffle(g, self, upscale_factor): |
| dims = self.type().sizes() |
| if len(dims) != 4: |
| return _unimplemented("pixel_shuffle", "only support 4d input") |
| return g.op("DepthToSpace", self, blocksize_i=upscale_factor, mode_s="CRD") |
| |
| |
| def _interpolate(name, dim, interpolate_mode): |
| def symbolic_fn(g, input, output_size, align_corners=None): |
| align_corners = sym_help._maybe_get_scalar(align_corners) |
| output_size = sym_help._maybe_get_const(output_size, 'is') |
| if sym_help._is_value(output_size): |
| offsets = g.op("Constant", value_t=torch.ones(offset, dtype=torch.int64)) |
| output_size = g.op("Concat", offsets, output_size, axis_i=0) |
| else: |
| output_size = [1 if i < 2 else output_size[-(dim - i)] for i in range(0, dim)] |
| output_size = g.op("Constant", value_t=torch.tensor(output_size)) |
| coordinate_transformation_mode = "asymmetric" if interpolate_mode == "nearest" \ |
| else "align_corners" if align_corners else "pytorch_half_pixel" |
| empty_tensor = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32)) |
| return g.op("Resize", |
| input, |
| empty_tensor, # roi only takes effect whith coordinate_transformation_mode="tf_crop_and_resize" |
| empty_tensor, # scales is not needed since we are sending out_size |
| output_size, |
| coordinate_transformation_mode_s=coordinate_transformation_mode, |
| cubic_coeff_a_f=-0.75, # only valid when mode="cubic" |
| mode_s=interpolate_mode, # nearest, linear, or cubic |
| nearest_mode_s="floor") # only valid when mode="nearest" |
| return symbolic_fn |
| |
| |
| upsample_nearest1d = _interpolate('upsample_nearest1d', 3, "nearest") |
| upsample_nearest2d = _interpolate('upsample_nearest2d', 4, "nearest") |
| upsample_nearest3d = _interpolate('upsample_nearest3d', 5, "nearest") |
| upsample_linear1d = _interpolate('upsample_linear1d', 3, "linear") |
| upsample_bilinear2d = _interpolate('upsample_bilinear2d', 4, "linear") |
| upsample_trilinear3d = _interpolate('upsample_trilinear3d', 5, "linear") |
| upsample_bicubic2d = _interpolate('upsample_bicubic2d', 4, "cubic") |
| |
| |
| @parse_args('v', 'i', 'v', 'v') |
| def gather(g, self, dim, index, sparse_grad=False): |
| if sym_help._maybe_get_const(sparse_grad, 'i'): |
| return _unimplemented("gather", "sparse_grad == True") |
| if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK: |
| return g.op("ATen", self, dim, index, sparse_grad, operator_s="gather") |
| return g.op("GatherElements", self, index, axis_i=dim) |
| |
| |
| @parse_args('v', 'i', 'v', 'v') |
| def scatter(g, self, dim, index, src): |
| if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK: |
| return g.op("ATen", self, dim, index, src, operator_s="scatter") |
| return g.op("ScatterElements", self, index, src, axis_i=dim) |
| |
| |
| @parse_args('v', 'i', 'none') |
| def cumsum(g, self, dim, dtype=None): |
| dim_tensor = g.op("Constant", value_t=torch.tensor(dim)) |
| csum = g.op("CumSum", self, dim_tensor) |
| if dtype and dtype.node().kind() != 'prim::Constant': |
| parsed_dtype = sym_help._get_const(dtype, 'i', 'dtype') |
| csum = g.op("Cast", csum, to_i=sym_help.scalar_type_to_onnx[parsed_dtype]) |
| return csum |
| |
| |
| @parse_args('v', 'i', 'i', 'i') |
| def _unique2(g, self, sorted, return_inverse, return_counts): |
| u, indices, inverse_indices, counts = g.op("Unique", self, sorted_i=sorted, outputs=4) |
| return u, inverse_indices, counts |
| |
| |
| @parse_args('v', 'i', 'i', 'i', 'i') |
| def unique_dim(g, self, dim, sorted, return_inverse, return_counts): |
| u, indices, inverse_indices, counts = g.op("Unique", self, axis_i=dim, sorted_i=sorted, outputs=4) |
| return u, inverse_indices, counts |
| |
| |
| def round(g, self): |
| return g.op("Round", self) |