|  | import torch | 
|  | from torch.distributions import constraints | 
|  | from torch.distributions.exponential import Exponential | 
|  | from torch.distributions.transformed_distribution import TransformedDistribution | 
|  | from torch.distributions.transforms import AffineTransform, PowerTransform | 
|  | from torch.distributions.utils import broadcast_all | 
|  | from torch.distributions.gumbel import euler_constant | 
|  |  | 
|  |  | 
|  | class Weibull(TransformedDistribution): | 
|  | r""" | 
|  | Samples from a two-parameter Weibull distribution. | 
|  |  | 
|  | Example: | 
|  |  | 
|  | >>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) | 
|  | >>> m.sample()  # sample from a Weibull distribution with scale=1, concentration=1 | 
|  | tensor([ 0.4784]) | 
|  |  | 
|  | Args: | 
|  | scale (float or Tensor): Scale parameter of distribution (lambda). | 
|  | concentration (float or Tensor): Concentration parameter of distribution (k/shape). | 
|  | """ | 
|  | arg_constraints = {'scale': constraints.positive, 'concentration': constraints.positive} | 
|  | support = constraints.positive | 
|  |  | 
|  | def __init__(self, scale, concentration, validate_args=None): | 
|  | self.scale, self.concentration = broadcast_all(scale, concentration) | 
|  | self.concentration_reciprocal = self.concentration.reciprocal() | 
|  | base_dist = Exponential(torch.ones_like(self.scale)) | 
|  | transforms = [PowerTransform(exponent=self.concentration_reciprocal), | 
|  | AffineTransform(loc=0, scale=self.scale)] | 
|  | super(Weibull, self).__init__(base_dist, | 
|  | transforms, | 
|  | validate_args=validate_args) | 
|  |  | 
|  | def expand(self, batch_shape, _instance=None): | 
|  | new = self._get_checked_instance(Weibull, _instance) | 
|  | new.scale = self.scale.expand(batch_shape) | 
|  | new.concentration = self.concentration.expand(batch_shape) | 
|  | new.concentration_reciprocal = new.concentration.reciprocal() | 
|  | base_dist = self.base_dist.expand(batch_shape) | 
|  | transforms = [PowerTransform(exponent=new.concentration_reciprocal), | 
|  | AffineTransform(loc=0, scale=new.scale)] | 
|  | super(Weibull, new).__init__(base_dist, | 
|  | transforms, | 
|  | validate_args=False) | 
|  | new._validate_args = self._validate_args | 
|  | return new | 
|  |  | 
|  | @property | 
|  | def mean(self): | 
|  | return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal)) | 
|  |  | 
|  | @property | 
|  | def variance(self): | 
|  | return self.scale.pow(2) * (torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal)) - | 
|  | torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal))) | 
|  |  | 
|  | def entropy(self): | 
|  | return euler_constant * (1 - self.concentration_reciprocal) + \ | 
|  | torch.log(self.scale * self.concentration_reciprocal) + 1 |