|  | import math | 
|  |  | 
|  | import torch | 
|  | from torch._six import inf, nan | 
|  | from torch.distributions import Chi2, constraints | 
|  | from torch.distributions.distribution import Distribution | 
|  | from torch.distributions.utils import _standard_normal, broadcast_all | 
|  |  | 
|  |  | 
|  | class StudentT(Distribution): | 
|  | r""" | 
|  | Creates a Student's t-distribution parameterized by degree of | 
|  | freedom :attr:`df`, mean :attr:`loc` and scale :attr:`scale`. | 
|  |  | 
|  | Example:: | 
|  |  | 
|  | >>> m = StudentT(torch.tensor([2.0])) | 
|  | >>> m.sample()  # Student's t-distributed with degrees of freedom=2 | 
|  | tensor([ 0.1046]) | 
|  |  | 
|  | Args: | 
|  | df (float or Tensor): degrees of freedom | 
|  | loc (float or Tensor): mean of the distribution | 
|  | scale (float or Tensor): scale of the distribution | 
|  | """ | 
|  | arg_constraints = {'df': constraints.positive, 'loc': constraints.real, 'scale': constraints.positive} | 
|  | support = constraints.real | 
|  | has_rsample = True | 
|  |  | 
|  | @property | 
|  | def mean(self): | 
|  | m = self.loc.clone(memory_format=torch.contiguous_format) | 
|  | m[self.df <= 1] = nan | 
|  | return m | 
|  |  | 
|  | @property | 
|  | def variance(self): | 
|  | m = self.df.clone(memory_format=torch.contiguous_format) | 
|  | m[self.df > 2] = self.scale[self.df > 2].pow(2) * self.df[self.df > 2] / (self.df[self.df > 2] - 2) | 
|  | m[(self.df <= 2) & (self.df > 1)] = inf | 
|  | m[self.df <= 1] = nan | 
|  | return m | 
|  |  | 
|  | def __init__(self, df, loc=0., scale=1., validate_args=None): | 
|  | self.df, self.loc, self.scale = broadcast_all(df, loc, scale) | 
|  | self._chi2 = Chi2(self.df) | 
|  | batch_shape = self.df.size() | 
|  | super(StudentT, self).__init__(batch_shape, validate_args=validate_args) | 
|  |  | 
|  | def expand(self, batch_shape, _instance=None): | 
|  | new = self._get_checked_instance(StudentT, _instance) | 
|  | batch_shape = torch.Size(batch_shape) | 
|  | new.df = self.df.expand(batch_shape) | 
|  | new.loc = self.loc.expand(batch_shape) | 
|  | new.scale = self.scale.expand(batch_shape) | 
|  | new._chi2 = self._chi2.expand(batch_shape) | 
|  | super(StudentT, new).__init__(batch_shape, validate_args=False) | 
|  | new._validate_args = self._validate_args | 
|  | return new | 
|  |  | 
|  | def rsample(self, sample_shape=torch.Size()): | 
|  | # NOTE: This does not agree with scipy implementation as much as other distributions. | 
|  | # (see https://github.com/fritzo/notebooks/blob/master/debug-student-t.ipynb). Using DoubleTensor | 
|  | # parameters seems to help. | 
|  |  | 
|  | #   X ~ Normal(0, 1) | 
|  | #   Z ~ Chi2(df) | 
|  | #   Y = X / sqrt(Z / df) ~ StudentT(df) | 
|  | shape = self._extended_shape(sample_shape) | 
|  | X = _standard_normal(shape, dtype=self.df.dtype, device=self.df.device) | 
|  | Z = self._chi2.rsample(sample_shape) | 
|  | Y = X * torch.rsqrt(Z / self.df) | 
|  | return self.loc + self.scale * Y | 
|  |  | 
|  | def log_prob(self, value): | 
|  | if self._validate_args: | 
|  | self._validate_sample(value) | 
|  | y = (value - self.loc) / self.scale | 
|  | Z = (self.scale.log() + | 
|  | 0.5 * self.df.log() + | 
|  | 0.5 * math.log(math.pi) + | 
|  | torch.lgamma(0.5 * self.df) - | 
|  | torch.lgamma(0.5 * (self.df + 1.))) | 
|  | return -0.5 * (self.df + 1.) * torch.log1p(y**2. / self.df) - Z | 
|  |  | 
|  | def entropy(self): | 
|  | lbeta = torch.lgamma(0.5 * self.df) + math.lgamma(0.5) - torch.lgamma(0.5 * (self.df + 1)) | 
|  | return (self.scale.log() + | 
|  | 0.5 * (self.df + 1) * | 
|  | (torch.digamma(0.5 * (self.df + 1)) - torch.digamma(0.5 * self.df)) + | 
|  | 0.5 * self.df.log() + lbeta) |