|  | from torch.distributions import constraints | 
|  | from torch.distributions.transforms import ExpTransform | 
|  | from torch.distributions.normal import Normal | 
|  | from torch.distributions.transformed_distribution import TransformedDistribution | 
|  |  | 
|  |  | 
|  | class LogNormal(TransformedDistribution): | 
|  | r""" | 
|  | Creates a log-normal distribution parameterized by | 
|  | :attr:`loc` and :attr:`scale` where:: | 
|  |  | 
|  | X ~ Normal(loc, scale) | 
|  | Y = exp(X) ~ LogNormal(loc, scale) | 
|  |  | 
|  | Example:: | 
|  |  | 
|  | >>> m = LogNormal(torch.tensor([0.0]), torch.tensor([1.0])) | 
|  | >>> m.sample()  # log-normal distributed with mean=0 and stddev=1 | 
|  | tensor([ 0.1046]) | 
|  |  | 
|  | Args: | 
|  | loc (float or Tensor): mean of log of distribution | 
|  | scale (float or Tensor): standard deviation of log of the distribution | 
|  | """ | 
|  | arg_constraints = {'loc': constraints.real, 'scale': constraints.positive} | 
|  | support = constraints.positive | 
|  | has_rsample = True | 
|  |  | 
|  | def __init__(self, loc, scale, validate_args=None): | 
|  | base_dist = Normal(loc, scale) | 
|  | super(LogNormal, self).__init__(base_dist, ExpTransform(), validate_args=validate_args) | 
|  |  | 
|  | def expand(self, batch_shape, _instance=None): | 
|  | new = self._get_checked_instance(LogNormal, _instance) | 
|  | return super(LogNormal, self).expand(batch_shape, _instance=new) | 
|  |  | 
|  | @property | 
|  | def loc(self): | 
|  | return self.base_dist.loc | 
|  |  | 
|  | @property | 
|  | def scale(self): | 
|  | return self.base_dist.scale | 
|  |  | 
|  | @property | 
|  | def mean(self): | 
|  | return (self.loc + self.scale.pow(2) / 2).exp() | 
|  |  | 
|  | @property | 
|  | def variance(self): | 
|  | return (self.scale.pow(2).exp() - 1) * (2 * self.loc + self.scale.pow(2)).exp() | 
|  |  | 
|  | def entropy(self): | 
|  | return self.base_dist.entropy() + self.loc |