|  | from numbers import Number | 
|  | import math | 
|  | import torch | 
|  | from torch.distributions import constraints | 
|  | from torch.distributions.uniform import Uniform | 
|  | from torch.distributions.transformed_distribution import TransformedDistribution | 
|  | from torch.distributions.transforms import AffineTransform, ExpTransform | 
|  | from torch.distributions.utils import broadcast_all | 
|  |  | 
|  | euler_constant = 0.57721566490153286060  # Euler Mascheroni Constant | 
|  |  | 
|  |  | 
|  | class Gumbel(TransformedDistribution): | 
|  | r""" | 
|  | Samples from a Gumbel Distribution. | 
|  |  | 
|  | Examples:: | 
|  |  | 
|  | >>> m = Gumbel(torch.tensor([1.0]), torch.tensor([2.0])) | 
|  | >>> m.sample()  # sample from Gumbel distribution with loc=1, scale=2 | 
|  | tensor([ 1.0124]) | 
|  |  | 
|  | Args: | 
|  | loc (float or Tensor): Location parameter of the distribution | 
|  | scale (float or Tensor): Scale parameter of the distribution | 
|  | """ | 
|  | arg_constraints = {'loc': constraints.real, 'scale': constraints.positive} | 
|  | support = constraints.real | 
|  |  | 
|  | def __init__(self, loc, scale, validate_args=None): | 
|  | self.loc, self.scale = broadcast_all(loc, scale) | 
|  | finfo = torch.finfo(self.loc.dtype) | 
|  | if isinstance(loc, Number) and isinstance(scale, Number): | 
|  | base_dist = Uniform(finfo.tiny, 1 - finfo.eps) | 
|  | else: | 
|  | base_dist = Uniform(torch.full_like(self.loc, finfo.tiny), | 
|  | torch.full_like(self.loc, 1 - finfo.eps)) | 
|  | transforms = [ExpTransform().inv, AffineTransform(loc=0, scale=-torch.ones_like(self.scale)), | 
|  | ExpTransform().inv, AffineTransform(loc=loc, scale=-self.scale)] | 
|  | super(Gumbel, self).__init__(base_dist, transforms, validate_args=validate_args) | 
|  |  | 
|  | def expand(self, batch_shape, _instance=None): | 
|  | new = self._get_checked_instance(Gumbel, _instance) | 
|  | new.loc = self.loc.expand(batch_shape) | 
|  | new.scale = self.scale.expand(batch_shape) | 
|  | return super(Gumbel, self).expand(batch_shape, _instance=new) | 
|  |  | 
|  | # Explicitly defining the log probability function for Gumbel due to precision issues | 
|  | def log_prob(self, value): | 
|  | if self._validate_args: | 
|  | self._validate_sample(value) | 
|  | y = (self.loc - value) / self.scale | 
|  | return (y - y.exp()) - self.scale.log() | 
|  |  | 
|  | @property | 
|  | def mean(self): | 
|  | return self.loc + self.scale * euler_constant | 
|  |  | 
|  | @property | 
|  | def stddev(self): | 
|  | return (math.pi / math.sqrt(6)) * self.scale | 
|  |  | 
|  | @property | 
|  | def variance(self): | 
|  | return self.stddev.pow(2) | 
|  |  | 
|  | def entropy(self): | 
|  | return self.scale.log() + (1 + euler_constant) |