| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| import unittest |
| import os |
| |
| import torch |
| |
| from torch.testing._internal.common_utils import run_tests, ProfilingMode, GRAPH_EXECUTOR, skipIfRocm |
| from torch.testing._internal.codegen.random_topo_test import runDefaultTestWithSeed |
| |
| from test_jit import JitTestCase, RUN_CUDA |
| |
| if GRAPH_EXECUTOR == ProfilingMode.PROFILING: |
| torch._C._jit_set_profiling_executor(True) |
| torch._C._jit_set_profiling_mode(True) |
| |
| FUSION_GROUP = 'prim::CudaFusionGroup' |
| |
| |
| class TestCudaFuser(JitTestCase): |
| |
| def setUp(self): |
| super(TestCudaFuser, self).setUp() |
| self.old_cpu_fuse = torch._C._jit_can_fuse_on_cpu() |
| self.old_gpu_fuse = torch._C._jit_can_fuse_on_gpu() |
| torch._C._jit_override_can_fuse_on_cpu(False) |
| torch._C._jit_override_can_fuse_on_gpu(False) |
| |
| if(RUN_CUDA): |
| self.old_nvfuser = torch._C._jit_set_nvfuser_enabled(True) |
| |
| def tearDown(self): |
| if(RUN_CUDA): |
| torch._C._jit_set_nvfuser_enabled(self.old_nvfuser) |
| torch._C._jit_override_can_fuse_on_cpu(self.old_cpu_fuse) |
| torch._C._jit_override_can_fuse_on_gpu(self.old_gpu_fuse) |
| super(TestCudaFuser, self).tearDown() |
| |
| def _run_helper(self, jit_op, op, *args): |
| torch.cuda.manual_seed_all(123) |
| jit_o = jit_op(*args) |
| torch.cuda.manual_seed_all(123) |
| jit_o = jit_op(*args) |
| torch.cuda.manual_seed_all(123) |
| o = op(*args) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(jit_op.graph_for(*args), FUSION_GROUP) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_half(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, alpha: float): |
| o_16 = torch.add(x, y) |
| o_32_a = torch.add(y, z, alpha=alpha) |
| o_32_b = torch.add(o_16, z) |
| return (o_16, o_32_a, o_32_b) |
| |
| t_jit = torch.jit.script(t) |
| alpha = 0.5 |
| # stick to integers, this avoid the numerical difference due to our |
| # promotion |
| x = torch.randint(0, 256, (4, 8)).to(dtype=torch.float16, device="cuda") |
| y = torch.randint(0, 256, (4, 8)).to(dtype=torch.float16, device="cuda") |
| z = torch.randint(0, 256, (4, 8)).to(dtype=torch.float16, device="cuda") |
| jit_o = t_jit(x, y, z, alpha) |
| jit_o = t_jit(x, y, z, alpha) |
| o = t(x, y, z, alpha) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| self.assertGraphContains(t_jit.graph_for(x, y, z, alpha), FUSION_GROUP) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_const(self): |
| def t(x, y): |
| o = x + y |
| o = o + 2.0 |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GROUP) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_chunk(self): |
| def t(x, y, z, q): |
| o = x + q |
| x0, x1 = torch.chunk(o, 2) |
| o = x0 + x1 |
| o = o + y |
| o = o * z |
| o = torch.relu(o) |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(2, 8, dtype=torch.float, device="cuda") |
| z = torch.randn(2, 8, dtype=torch.float, device="cuda") |
| q = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, z, q) |
| jit_o = t_jit(x, y, z, q) |
| o = t(x, y, z, q) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, z, q), FUSION_GROUP) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_scalar_input(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + y |
| o = o + z |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, 1, 32, dtype=torch.float, device="cuda") |
| y = y.expand(4, 8, 32, 32) |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GROUP) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_broadcasting(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + y |
| o = o + z |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GROUP) |
| |
| @unittest.skipIf(True, "real broadcast with different output not supported yet") |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_broadcasting_multiple_output_shape(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = x + 12 |
| o1 = o + y |
| o2 = o + z |
| oo = o1.sum() + o2.sum() |
| return oo |
| t_jit = torch.jit.script(t) |
| x = torch.randn(32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(2, 32, 32, dtype=torch.float, device="cuda") |
| z = torch.randn(4, 32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| o = t(x, y, z) |
| self.assertEqual(o, jit_o) |
| # Currently cannot fuse this |
| self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GROUP) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_broadcasting_multiple_output(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = x + 12 |
| o1 = o + y |
| o2 = o + z |
| oo = o1.sum() + o2.sum() |
| return oo |
| t_jit = torch.jit.script(t) |
| x = torch.randn(32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 32, 32, dtype=torch.float, device="cuda") |
| z = torch.randn(4, 32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| o = t(x, y, z) |
| self.assertEqual(o, jit_o) |
| # Currently cannot fuse this |
| self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GROUP) |
| |
| def _binary_test_helper(self, operation): |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + z |
| o = operation(o, y) |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GROUP) |
| |
| def _unary_test_helper(self, operation): |
| def t(x: torch.Tensor, z: float): |
| o = x + z |
| o = operation(o) |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, 2.0) |
| jit_o = t_jit(x, 2.0) |
| o = t(x, 2.0) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, 2.0), FUSION_GROUP) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_unary_ops(self): |
| operations = [torch.neg, |
| torch.abs, |
| torch.log, |
| torch.log10, |
| torch.log1p, |
| torch.log2, |
| torch.lgamma, |
| torch.exp, |
| torch.expm1, |
| torch.erf, |
| torch.erfc, |
| torch.cos, |
| torch.acos, |
| torch.cosh, |
| torch.sin, |
| torch.asin, |
| torch.tan, |
| torch.atan, |
| torch.sqrt, |
| torch.rsqrt, |
| torch.ceil, |
| torch.floor, |
| torch.round, |
| torch.trunc, |
| torch.frac, |
| torch.reciprocal, |
| torch.relu, |
| torch.sigmoid, |
| torch.tanh, |
| torch.nn.functional.gelu] |
| for op in operations: |
| self._unary_test_helper(op) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_binary_ops(self): |
| operations = [torch.div, |
| torch.mul, |
| torch.atan2, |
| torch.max, |
| torch.min, |
| torch.pow, |
| torch.remainder, |
| torch.fmod, |
| torch.eq, |
| torch.ne, |
| torch.ge, |
| torch.gt, |
| torch.le, |
| torch.lt] |
| for op in operations: |
| self._binary_test_helper(op) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| # legacy fuser does not work for rand_like, see issue #34361 |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_ternary_ops(self): |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| cond = torch.randint(0, 2, (4, 8, 32, 32)).to(dtype=torch.bool, device="cuda") |
| |
| def add(x: torch.Tensor, other: torch.Tensor, alpha: float): |
| o = torch.relu(x) |
| o = torch.add(o, other=other, alpha=alpha) |
| return o |
| add_jit = torch.jit.script(add) |
| self._run_helper(add_jit, add, x, y, 2.0) |
| |
| def clamp0(x: torch.Tensor, f: float): |
| o = torch.rand_like(x) |
| o = o * torch.clamp(x, min=f) |
| return o |
| clamp0_jit = torch.jit.script(clamp0) |
| self._run_helper(clamp0_jit, clamp0, x, 0.5) |
| |
| def clamp1(x: torch.Tensor, f: float, ff: float): |
| o = torch.rand_like(x) |
| o = o * torch.clamp(x, min=f, max=ff) |
| return o |
| clamp1_jit = torch.jit.script(clamp1) |
| self._run_helper(clamp1_jit, clamp1, x, -0.2, 0.7) |
| |
| def threshold(x: torch.Tensor, th: float, val: float): |
| o = torch.rand_like(x) |
| o = x * torch.threshold(o, th, val) |
| return o |
| threshold_jit = torch.jit.script(threshold) |
| self._run_helper(threshold_jit, threshold, x, 0.2, 0.9) |
| |
| def where(x: torch.Tensor, y: torch.Tensor, cond: torch.Tensor): |
| o = torch.rand_like(x) |
| o = o * torch.where(cond, x, y) |
| return o |
| where_jit = torch.jit.script(where) |
| self._run_helper(where_jit, where, x, y, cond) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_dynamic_size(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + y |
| o = o + z |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GROUP) |
| x = torch.randn(8, 32, 16, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(16, 8, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| x = torch.randn(8, 17, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(8, 17, 1, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @skipIfRocm |
| def test_random_topo(self): |
| os.environ["PYTORCH_CUDA_FUSER_DISABLE_FALLBACK"] = "1" |
| self.assertTrue(runDefaultTestWithSeed(28449)) |
| |
| |
| class TestPassManagerCudaFuser(JitTestCase): |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING and GRAPH_EXECUTOR != |
| ProfilingMode.LEGACY, "Requires fusion optimization pass to be effective") |
| @skipIfRocm |
| def test_context_manager_test(self): |
| x = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| with torch.jit.fuser('fuser2'): |
| with torch.jit.fuser('fuser2'): |
| |
| def t1(x, y): |
| o = x + y |
| o = o + 2.0 |
| return o |
| t_jit = torch.jit.script(t1) |
| t_jit(x, y) |
| t_jit(x, y) |
| self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GROUP) |
| |
| def t2(x, y): |
| o = x + y |
| o = o + 3.0 |
| return o |
| t_jit_2 = torch.jit.script(t2) |
| t_jit_2(x, y) |
| t_jit_2(x, y) |
| self.assertGraphContains(t_jit_2.graph_for(x, y), FUSION_GROUP) |
| |
| def t3(x, y): |
| o = x + y |
| o = o + 4.0 |
| return o |
| t_jit_3 = torch.jit.script(t3) |
| t_jit_3(x, y) |
| t_jit_3(x, y) |
| self.assertGraphContainsExactly(t_jit_3.graph_for(x, y), FUSION_GROUP, 0) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @skipIfRocm |
| def test_register_fuser(self): |
| self.assertFalse(torch._C._jit_set_nvfuser_enabled(True)) |
| self.assertTrue(torch._C._jit_nvfuser_enabled()) |
| self.assertTrue(torch._C._jit_set_nvfuser_enabled(True)) |
| self.assertTrue(torch._C._jit_nvfuser_enabled()) |
| self.assertTrue(torch._C._jit_set_nvfuser_enabled(False)) |
| self.assertFalse(torch._C._jit_nvfuser_enabled()) |
| |
| if __name__ == '__main__': |
| run_tests() |