blob: 9f50ec87e2e38033d32c5ed32f7e7526b99d554e [file] [log] [blame]
import dataclasses
import traceback
from collections import OrderedDict
from typing import Any, Callable, Dict, List, Set, Tuple, Union
import torch
from torch.nn.modules.batchnorm import _BatchNorm
from torch.nn.parallel.scatter_gather import ( # type: ignore[attr-defined]
_is_namedtuple,
)
from torch.nn.utils.rnn import PackedSequence
"""Useful functions to deal with tensor types with other python container types."""
__all__ = ["p_assert"]
def _contains_batchnorm(module):
return any(
isinstance(mod, _BatchNorm) for mod in module.modules()
)
def _override_batchnorm_mixed_precision(module):
for mod in module.modules():
if isinstance(mod, _BatchNorm):
mod._wrap_overrides = {"mixed_precision": None} # type: ignore[assignment]
def _apply_to_tensors(
fn: Callable, container: Union[torch.Tensor, Dict, List, Tuple, Set, OrderedDict, PackedSequence]
) -> Any:
"""Recursively apply to all tensor in different kinds of container types."""
def apply(x: Union[torch.Tensor, Dict, List, Tuple, Set, OrderedDict, PackedSequence]) -> Any:
if torch.is_tensor(x):
return fn(x)
elif hasattr(x, "__dataclass_fields__"):
dc = dataclasses.replace(x)
for f in dataclasses.fields(dc):
name = f.name
setattr(dc, name, apply(getattr(dc, name)))
return dc
elif isinstance(x, OrderedDict):
od = x.__class__()
for key, value in x.items():
od[key] = apply(value)
return od
elif isinstance(x, PackedSequence):
apply(x.data)
return x
elif isinstance(x, dict):
return {key: apply(value) for key, value in x.items()}
elif _is_namedtuple(x):
res = (apply(el) for el in x)
return type(x)(*res)
elif isinstance(x, (list, tuple, set)):
return type(x)(apply(el) for el in x)
else:
return x
return apply(container)
def _apply_to_modules(
root_module: torch.nn.Module,
module_fn: Callable,
return_fn: Callable,
*args,
**kwargs,
):
"""
Performs a pre-order traversal of the modules in the hierarchy rooted at
``root_module``, applying ``module_fn`` at each module and finally
returning a value using ``return_fn``. The traversal constructs the full
module prefix name (e.g. "module.submodule." just like in model state dict)
and makes that available to ``module_fn``.
"""
def f(module: torch.nn.Module, prefix: str, *args, **kwargs):
# Call the module function before recursing over children (pre-order)
module_fn(module, prefix, *args, **kwargs)
for submodule_name, submodule in module.named_children():
if submodule is not None:
new_prefix = prefix + submodule_name + "."
f(submodule, new_prefix, *args, **kwargs)
f(root_module, "", *args, **kwargs)
return return_fn(*args, **kwargs)
@torch.no_grad()
def _alloc_storage(tensor: torch.Tensor, size: torch.Size) -> bool:
"""
Allocate storage for ``tensor`` with the given size.
Returns:
bool: ``True`` if this method allocated storage and ``False`` if the
storage was already allocated.
"""
already_allocated = tensor.storage().size() == size.numel()
if not already_allocated:
tensor_storage_size = tensor.storage().size()
p_assert(
tensor_storage_size == 0,
f"Tensor storage should have been resized to be 0 but got {tensor_storage_size}",
)
tensor.storage().resize_(size.numel())
return not already_allocated
@torch.no_grad()
def _free_storage(tensor: torch.Tensor) -> bool:
"""
Frees the underlying storage of ``tensor``.
Returns:
bool: ``True`` if the method freed the storage and ``False`` if the
storage was already freed.
"""
already_freed = tensor.storage().size() == 0
if not already_freed:
p_assert(
tensor.storage_offset() == 0,
"Freeing a tensor's storage is unsafe when it is not the sole occupant",
)
tensor.storage().resize_(0)
return not already_freed
def p_assert(cond: Any, s: Any, raise_assertion_error: bool = True) -> None:
"""This is used as an alternate to ``assert`` when in the backward context
to print the error message ``s`` since otherwise, it is swallowed."""
if not cond:
print(s)
traceback.print_stack()
if raise_assertion_error:
raise AssertionError