from __future__ import absolute_import, division, print_function | |
import math | |
import torch | |
import torch.jit | |
from torch.distributions import constraints | |
from torch.distributions.distribution import Distribution | |
from torch.distributions.utils import broadcast_all, lazy_property | |
def _eval_poly(y, coef): | |
coef = list(coef) | |
result = coef.pop() | |
while coef: | |
result = coef.pop() + y * result | |
return result | |
_I0_COEF_SMALL = [1.0, 3.5156229, 3.0899424, 1.2067492, 0.2659732, 0.360768e-1, 0.45813e-2] | |
_I0_COEF_LARGE = [0.39894228, 0.1328592e-1, 0.225319e-2, -0.157565e-2, 0.916281e-2, | |
-0.2057706e-1, 0.2635537e-1, -0.1647633e-1, 0.392377e-2] | |
_I1_COEF_SMALL = [0.5, 0.87890594, 0.51498869, 0.15084934, 0.2658733e-1, 0.301532e-2, 0.32411e-3] | |
_I1_COEF_LARGE = [0.39894228, -0.3988024e-1, -0.362018e-2, 0.163801e-2, -0.1031555e-1, | |
0.2282967e-1, -0.2895312e-1, 0.1787654e-1, -0.420059e-2] | |
_COEF_SMALL = [_I0_COEF_SMALL, _I1_COEF_SMALL] | |
_COEF_LARGE = [_I0_COEF_LARGE, _I1_COEF_LARGE] | |
def _log_modified_bessel_fn(x, order=0): | |
""" | |
Returns ``log(I_order(x))`` for ``x > 0``, | |
where `order` is either 0 or 1. | |
""" | |
assert order == 0 or order == 1 | |
# compute small solution | |
y = (x / 3.75) | |
y = y * y | |
small = _eval_poly(y, _COEF_SMALL[order]) | |
if order == 1: | |
small = x.abs() * small | |
small = small.log() | |
# compute large solution | |
y = 3.75 / x | |
large = x - 0.5 * x.log() + _eval_poly(y, _COEF_LARGE[order]).log() | |
result = torch.where(x < 3.75, small, large) | |
return result | |
@torch.jit._script_if_tracing | |
def _rejection_sample(loc, concentration, proposal_r, x): | |
done = torch.zeros(x.shape, dtype=torch.bool, device=loc.device) | |
while not done.all(): | |
u = torch.rand((3,) + x.shape, dtype=loc.dtype, device=loc.device) | |
u1, u2, u3 = u.unbind() | |
z = torch.cos(math.pi * u1) | |
f = (1 + proposal_r * z) / (proposal_r + z) | |
c = concentration * (proposal_r - f) | |
accept = ((c * (2 - c) - u2) > 0) | ((c / u2).log() + 1 - c >= 0) | |
if accept.any(): | |
x = torch.where(accept, (u3 - 0.5).sign() * f.acos(), x) | |
done = done | accept | |
return (x + math.pi + loc) % (2 * math.pi) - math.pi | |
class VonMises(Distribution): | |
""" | |
A circular von Mises distribution. | |
This implementation uses polar coordinates. The ``loc`` and ``value`` args | |
can be any real number (to facilitate unconstrained optimization), but are | |
interpreted as angles modulo 2 pi. | |
Example:: | |
>>> m = dist.VonMises(torch.tensor([1.0]), torch.tensor([1.0])) | |
>>> m.sample() # von Mises distributed with loc=1 and concentration=1 | |
tensor([1.9777]) | |
:param torch.Tensor loc: an angle in radians. | |
:param torch.Tensor concentration: concentration parameter | |
""" | |
arg_constraints = {'loc': constraints.real, 'concentration': constraints.positive} | |
support = constraints.real | |
has_rsample = False | |
def __init__(self, loc, concentration, validate_args=None): | |
self.loc, self.concentration = broadcast_all(loc, concentration) | |
batch_shape = self.loc.shape | |
event_shape = torch.Size() | |
# Parameters for sampling | |
tau = 1 + (1 + 4 * self.concentration ** 2).sqrt() | |
rho = (tau - (2 * tau).sqrt()) / (2 * self.concentration) | |
self._proposal_r = (1 + rho ** 2) / (2 * rho) | |
super(VonMises, self).__init__(batch_shape, event_shape, validate_args) | |
def log_prob(self, value): | |
log_prob = self.concentration * torch.cos(value - self.loc) | |
log_prob = log_prob - math.log(2 * math.pi) - _log_modified_bessel_fn(self.concentration, order=0) | |
return log_prob | |
@torch.no_grad() | |
def sample(self, sample_shape=torch.Size()): | |
""" | |
The sampling algorithm for the von Mises distribution is based on the following paper: | |
Best, D. J., and Nicholas I. Fisher. | |
"Efficient simulation of the von Mises distribution." Applied Statistics (1979): 152-157. | |
""" | |
shape = self._extended_shape(sample_shape) | |
x = torch.empty(shape, dtype=self.loc.dtype, device=self.loc.device) | |
return _rejection_sample(self.loc, self.concentration, self._proposal_r, x) | |
def expand(self, batch_shape): | |
try: | |
return super(VonMises, self).expand(batch_shape) | |
except NotImplementedError: | |
validate_args = self.__dict__.get('_validate_args') | |
loc = self.loc.expand(batch_shape) | |
concentration = self.concentration.expand(batch_shape) | |
return type(self)(loc, concentration, validate_args=validate_args) | |
@property | |
def mean(self): | |
""" | |
The provided mean is the circular one. | |
""" | |
return self.loc | |
@lazy_property | |
def variance(self): | |
""" | |
The provided variance is the circular one. | |
""" | |
return 1 - (_log_modified_bessel_fn(self.concentration, order=1) - | |
_log_modified_bessel_fn(self.concentration, order=0)).exp() |