blob: ab4179ae50222d09810863a8d68bdd13d3cb71ee [file] [log] [blame]
#include "test/cpp/tensorexpr/test_base.h"
#include "test/cpp/tensorexpr/test_utils.h"
#include "torch/csrc/jit/tensorexpr/hash_provider.h"
#include "torch/csrc/jit/tensorexpr/ir_simplifier.h"
#include "torch/csrc/jit/tensorexpr/loopnest.h"
#include <cmath>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
using SimpleIRExprEval = ExprEval<SimpleIREvaluator>;
#define IS_NODE(T, node) \
{ \
auto* node_ = dynamic_cast<const T*>(node); \
ASSERT_NE(nullptr, node_); \
}
#define IS_NODE_WITH_NAME(T, node, name) \
auto* name = dynamic_cast<const T*>(node); \
ASSERT_NE(nullptr, name);
#define IS_NODE_WITH_NAME_AND_CAST(T, node, name, Type) \
const T* name = nullptr; \
{ \
auto* node_ = dynamic_cast<const Cast*>(node); \
ASSERT_NE(nullptr, node_); \
ASSERT_EQ(node_->dtype().scalar_type(), ScalarType::Type); \
name = dynamic_cast<const T*>(node_->src_value()); \
} \
ASSERT_NE(nullptr, name);
#define IS_IMM_WITH_VAL(T, node, val) \
{ \
auto* node_ = dynamic_cast<const T##Imm*>(node); \
ASSERT_NE(nullptr, node_); \
ASSERT_EQ(node_->value(), val); \
}
#define IS_VAR_WITH_NAME(node, name) \
{ \
auto* node_ = dynamic_cast<const Var*>(node); \
ASSERT_NE(nullptr, node_); \
ASSERT_EQ(node_->name_hint(), name); \
}
void testConstantFoldSimple() {
KernelScope kernel_scope;
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle f = (a + b);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<FloatImm>(), nullptr);
ASSERT_EQ(newF.AsNode<FloatImm>()->value(), 5);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<float>(), 5.f);
}
void testConstantFoldTwoLayer() {
KernelScope kernel_scope;
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle c(4.0f);
ExprHandle d(5.0f);
ExprHandle f = (a + b) - (c + d);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<FloatImm>(), nullptr);
ASSERT_EQ(newF.AsNode<FloatImm>()->value(), -4);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<float>(), -4.f);
}
void testConstantFoldShifts() {
KernelScope kernel_scope;
ExprHandle a(7);
ExprHandle b(2);
ExprHandle c(3);
ExprHandle f = ((a << b) << b) >> c;
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 14);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), 7 << (4 - 3));
}
void testConstantFoldBitwise() {
KernelScope kernel_scope;
ExprHandle a(59);
ExprHandle b(22);
ExprHandle c(101);
ExprHandle f = (a ^ b) & c;
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 37);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), (59 ^ 22) & 101);
}
void testConstantFoldMultiOp() {
KernelScope kernel_scope;
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle c(4.0f);
ExprHandle d(5.0f);
ExprHandle e(6.0f);
ExprHandle f(7.0f);
ExprHandle fn = ((a / e) - (c + d)) * (f / b);
ExprHandle newF = IRSimplifier::simplify(fn);
ASSERT_NE(newF.AsNode<FloatImm>(), nullptr);
SimpleIRExprEval eval(newF);
SimpleIRExprEval ref(fn);
ASSERT_EQ(eval.value<float>(), ref.value<float>());
}
void testConstantFoldMinMax() {
KernelScope kernel_scope;
ExprHandle a(12.0f);
ExprHandle b(15.0f);
ExprHandle c(17.0f);
// x = max(12, min(15, 17)).
ExprHandle minHandle = Min::make(b, c, true);
ExprHandle fn = Max::make(a, minHandle, false);
ASSERT_EQ(fn.dtype().scalar_type(), ScalarType::Float);
ExprHandle newF = IRSimplifier::simplify(fn);
ASSERT_NE(newF.AsNode<FloatImm>(), nullptr);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<float>(), 15.f);
}
void testConstantFoldIntrinsics() {
KernelScope kernel_scope;
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle c(4.0f);
ExprHandle powHandle = Intrinsics::make(kPow, a, b);
ExprHandle sinHandle = Intrinsics::make(kSin, powHandle);
ExprHandle modHandle = Intrinsics::make(kFmod, c, sinHandle);
ExprHandle logHandle = Intrinsics::make(kLog10, modHandle);
ExprHandle rndHandle = Intrinsics::make(kRound, logHandle);
ExprHandle fn = Intrinsics::make(kFabs, rndHandle);
ExprHandle newF = IRSimplifier::simplify(fn);
ASSERT_NE(newF.AsNode<FloatImm>(), nullptr);
ASSERT_EQ(newF.AsNode<FloatImm>()->value(), 1);
SimpleIRExprEval eval(newF);
SimpleIRExprEval ref(fn);
ASSERT_EQ(eval.value<float>(), ref.value<float>());
}
void testConstantFoldWithVar() {
KernelScope kernel_scope;
{
VarHandle x("x", kInt);
ExprHandle body = x * (ExprHandle(2) + ExprHandle(4));
ExprHandle newF = IRSimplifier::simplify(body);
const Mul* root = newF.AsNode<Mul>();
ASSERT_NE(root, nullptr);
ASSERT_NE(dynamic_cast<const IntImm*>(root->lhs()), nullptr);
SimpleIRExprEval eval(newF);
eval.bindVar(x, ExprHandle(3));
ASSERT_EQ(eval.value<int>(), 3 * (2 + 4));
}
{
VarHandle x("x", kFloat);
ExprHandle body = x * (ExprHandle(2.f) + ExprHandle(4.f));
ExprHandle newF = IRSimplifier::simplify(body);
const Mul* root = newF.AsNode<Mul>();
ASSERT_NE(root, nullptr);
ASSERT_NE(dynamic_cast<const FloatImm*>(root->rhs()), nullptr);
SimpleIRExprEval eval(newF);
eval.bindVar(x, ExprHandle(3.f));
ASSERT_EQ(eval.value<float>(), 3 * (2 + 4));
}
}
void testConditionalSelectFoldSimple() {
KernelScope kernel_scope;
ExprHandle a(3.0f);
ExprHandle b(4.0f);
ExprHandle c(3.0f);
{
ExprHandle f = (a > b);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 0);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), 0);
}
{
ExprHandle f = (a < b);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 1);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), 1);
}
{
ExprHandle f = (a == c);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 1);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), 1);
}
{
ExprHandle f = (a != c);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 0);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), 0);
}
}
void testConditionalSelectFoldTwoLayer() {
KernelScope kernel_scope;
ExprHandle a(3.0f);
ExprHandle b(2.0f);
ExprHandle c(2.0f);
ExprHandle d(1.0f);
{
ExprHandle f = (a + b < c + d);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 0);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), 0);
}
{
ExprHandle f = (a + b > c + d);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 1);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), 1);
}
{
ExprHandle f = (a + d == b + c);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 1);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), 1);
}
{
ExprHandle f = (a + d != b + c);
ExprHandle newF = IRSimplifier::simplify(f);
ASSERT_NE(newF.AsNode<IntImm>(), nullptr);
ASSERT_EQ(newF.AsNode<IntImm>()->value(), 0);
SimpleIRExprEval eval(newF);
ASSERT_EQ(eval.value<int>(), 0);
}
}
void testConditionalSelectFoldWithVar() {
KernelScope kernel_scope;
VarHandle x("x", kFloat);
ExprHandle f = x < 4.f;
ExprHandle newF = IRSimplifier::simplify(f);
const IntImm* folded = newF.AsNode<IntImm>();
ASSERT_EQ(folded, nullptr);
{
SimpleIRExprEval eval(newF);
eval.bindVar(x, ExprHandle(3.f));
ASSERT_EQ(eval.value<int>(), 1);
}
{
SimpleIRExprEval eval(newF);
eval.bindVar(x, ExprHandle(5.f));
ASSERT_EQ(eval.value<int>(), 0);
}
}
void testUnFoldableExpr() {
KernelScope kernel_scope;
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
ExprHandle body = (ExprHandle(3) * x) + (ExprHandle(5) * y);
ExprHandle newF = IRSimplifier::simplify(body);
const Add* root = newF.AsNode<Add>();
ASSERT_NE(root, nullptr);
ASSERT_EQ(dynamic_cast<const FloatImm*>(root->lhs()), nullptr);
ASSERT_EQ(dynamic_cast<const FloatImm*>(root->rhs()), nullptr);
SimpleIRExprEval eval(newF);
eval.bindVar(x, ExprHandle(3.f));
eval.bindVar(y, ExprHandle(2.f));
ASSERT_EQ(eval.value<float>(), 9 + 10);
}
void testHashSimple() {
KernelScope kernel_scope;
VarHandle x("x", kFloat);
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle f = a + b * x;
HashProvider hasher;
auto hash_x = hasher.hash(x.node());
auto hash_a = hasher.hash(a.node());
auto hash_f = hasher.hash(f.node());
ASSERT_NE(hash_x, (size_t)0);
ASSERT_NE(hash_a, (size_t)0);
ASSERT_NE(hash_f, (size_t)0);
ASSERT_NE(hash_x, hash_a);
ASSERT_NE(hash_x, hash_f);
ASSERT_NE(hash_a, hash_f);
}
void testHashEquivalence() {
KernelScope kernel_scope;
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
ExprHandle f = (x * y) + (x * y);
const Add* root = f.AsNode<Add>();
ASSERT_NE(root, nullptr);
HashProvider hasher;
auto hash_f = hasher.hash(f.node());
auto hash_l = hasher.hash(root->lhs());
auto hash_r = hasher.hash(root->rhs());
// Root not equal to either branch.
ASSERT_NE(hash_f, hash_l);
ASSERT_NE(hash_f, hash_r);
// but branches are equal.
ASSERT_EQ(hash_l, hash_r);
// Still equivalent if separate.
ExprHandle a(2);
ExprHandle f2 = x + a / y;
ExprHandle b(2);
ExprHandle f3 = x + b / y;
ASSERT_EQ(hasher.hash(f2.node()), hasher.hash(f3.node()));
// Not equivalent if different vars (even with same name).
VarHandle z("x", kFloat);
ExprHandle f4 = z + b / y;
ASSERT_NE(hasher.hash(f2.node()), hasher.hash(f4.node()));
// Intrinsics sanity check.
ExprHandle f5 = Intrinsics::make(kSin, x) * Intrinsics::make(kCos, x);
ASSERT_NE(hasher.hash(f5.node()), (size_t)0);
}
void testHashEquivalenceAfterFolding() {
KernelScope kernel_scope;
VarHandle x("x", kFloat);
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle c(5.0f);
ExprHandle f1 = ((a + b) * x);
ExprHandle f2 = (c * x);
HashProvider hasher;
auto hash_l = hasher.hash(f1.node());
auto hash_r = hasher.hash(f2.node());
// Root not equal to either branch, and branches not equal.
ASSERT_NE(hash_l, hash_r);
ExprHandle ff1 = IRSimplifier::simplify(f1);
ExprHandle ff2 = IRSimplifier::simplify(f2);
auto hash_l_n = hasher.hash(ff1.node());
auto hash_r_n = hasher.hash(ff2.node());
// but branches are now equal.
ASSERT_EQ(hash_l_n, hash_r_n);
}
void testHashDifferenceTypes() {
KernelScope kernel_scope;
HashProvider hasher;
std::vector<const Expr*> immediates;
immediates.push_back(new DoubleImm(1));
immediates.push_back(new FloatImm(1));
immediates.push_back(new HalfImm(1));
immediates.push_back(new BoolImm(1));
immediates.push_back(new CharImm(1));
immediates.push_back(new ByteImm(1));
immediates.push_back(new ShortImm(1));
immediates.push_back(new IntImm(1));
immediates.push_back(new LongImm(1));
// Immediates of different types are not equal.
for (unsigned int i = 0; i < immediates.size(); ++i) {
for (unsigned int j = i + 1; j < immediates.size(); ++j) {
ASSERT_NE(hasher.hash(immediates[i]), hasher.hash(immediates[j]));
}
}
// But coerced immediates are if they are the same type:
ExprHandle f1 = ExprHandle(2.f) + CharImm::make(1);
ExprHandle f2 = Cast::make(kFloat, IntImm::make(3));
ExprHandle ff1 = IRSimplifier::simplify(f1);
ExprHandle ff2 = IRSimplifier::simplify(f2);
ASSERT_EQ(hasher.hash(ff1.node()), hasher.hash(ff2.node()));
}
void testHashLargeExpression() {
KernelScope kernel_scope;
constexpr int N = 1024;
Buffer a(BufHandle("A", {N}, kInt));
Buffer b(BufHandle("B", {N}, kInt));
Buffer c(BufHandle("C", {N}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto memcpy_stmt = For::make(
i,
0,
N,
Store::make(
c,
{i},
CompareSelect::make(
Load::make(a, {i}, mask),
Load::make(b, {i}, mask),
CompareSelectOperation::kEQ),
mask));
Buffer d(BufHandle("D", {1}, kInt));
Buffer e(BufHandle("E", {1}, kInt));
auto store_ramp_stmt = Store::make(
e,
{Ramp::make(0, 1, 4)},
Load::make(d, {Ramp::make(0, 1, 4)}, Broadcast::make(IntImm::make(1), 4)),
Broadcast::make(Cast::make(kInt, DoubleImm::make(1)), 4));
auto if_stmt = Cond::make(
CompareSelect::make(
Load::make(a, {i}, mask),
Load::make(b, {i}, mask),
CompareSelectOperation::kGE),
memcpy_stmt,
store_ramp_stmt);
HashProvider hasher;
auto hash_r = hasher.hash(if_stmt);
// We should not have to do any more work.
ASSERT_TRUE(hasher.cachedHash(memcpy_stmt));
auto hash_t = hasher.hash(memcpy_stmt);
ASSERT_TRUE(hasher.cachedHash(store_ramp_stmt));
auto hash_f = hasher.hash(store_ramp_stmt);
// Root not equal to either branch, and branches not equal.
ASSERT_NE(hash_r, hash_t);
ASSERT_NE(hash_r, hash_f);
ASSERT_NE(hash_t, hash_f);
}
void testHashForLoopOptions() {
KernelScope kernel_scope;
constexpr int N = 1024;
Buffer a(BufHandle("A", {N}, kInt));
Buffer b(BufHandle("B", {N}, kInt));
Buffer c(BufHandle("C", {N}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto for_stmt = For::make(
i,
0,
N,
Store::make(
c,
{i},
CompareSelect::make(
Load::make(a, {i}, mask),
Load::make(b, {i}, mask),
CompareSelectOperation::kEQ),
mask));
HashProvider hasher;
auto hash_before = hasher.hash(for_stmt);
hasher.clearCache();
for_stmt->set_gpu_block_index(LoopOptions::IDX_X);
auto hash_block_idx = hasher.hash(for_stmt);
hasher.clearCache();
ASSERT_NE(hash_before, hash_block_idx);
for_stmt->set_gpu_block_index(LoopOptions::IDX_UNSET);
auto hash_reset = hasher.hash(for_stmt);
hasher.clearCache();
ASSERT_EQ(hash_before, hash_reset);
for_stmt->set_gpu_thread_index(LoopOptions::IDX_X);
auto hash_thread_idx = hasher.hash(for_stmt);
ASSERT_NE(hash_before, hash_thread_idx);
ASSERT_NE(hash_block_idx, hash_thread_idx);
}
/// (2 + x) + 4 => x + 6
void testSimplifyAdd() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
VarHandle n_1("n_1", kInt);
ExprHandle body = (ExprHandle(2) + x) + ExprHandle(4);
ExprHandle simplified = IRSimplifier::simplify(body);
const Add* root = simplified.AsNode<Add>();
ASSERT_NE(root, nullptr);
const Var* lhs = dynamic_cast<const Var*>(root->lhs());
ASSERT_NE(lhs, nullptr);
ASSERT_EQ(lhs->name_hint(), "x");
const IntImm* rhs = dynamic_cast<const IntImm*>(root->rhs());
ASSERT_NE(rhs, nullptr);
ASSERT_EQ(rhs->value(), 6.f);
}
/// (2 - x) - 4 => -2 - x
void testSimplifySub() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
ExprHandle body = (ExprHandle(2) - x) - ExprHandle(4);
ExprHandle simplified = IRSimplifier::simplify(body);
const Sub* root = simplified.AsNode<Sub>();
ASSERT_NE(root, nullptr);
const IntImm* lhs = dynamic_cast<const IntImm*>(root->lhs());
ASSERT_NE(lhs, nullptr);
ASSERT_EQ(lhs->value(), -2.f);
const Var* rhs = dynamic_cast<const Var*>(root->rhs());
ASSERT_NE(rhs, nullptr);
ASSERT_EQ(rhs->name_hint(), "x");
}
/// 2 * (1 - x) - 4 => -2 * (x + 3)
void testSimplifyMultiLayer() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
ExprHandle body = ExprHandle(2) * ((ExprHandle(1) - x) - ExprHandle(4));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), -2);
IS_NODE_WITH_NAME(Add, mul->rhs(), add);
IS_VAR_WITH_NAME(add->lhs(), "x");
IS_IMM_WITH_VAL(Int, add->rhs(), 3);
}
/// 2 * (3 * x) - (x * 4) => 2 * x
void testSimplifyMultiTerm() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
ExprHandle body =
(ExprHandle(2) * ((ExprHandle(3) * x)) - (x * ExprHandle(4)));
ExprHandle simplified = IRSimplifier::simplify(body);
const Mul* root = simplified.AsNode<Mul>();
ASSERT_NE(root, nullptr);
const IntImm* lhs = dynamic_cast<const IntImm*>(root->lhs());
ASSERT_NE(lhs, nullptr);
ASSERT_EQ(lhs->value(), 2);
const Var* rhs = dynamic_cast<const Var*>(root->rhs());
ASSERT_NE(rhs, nullptr);
ASSERT_EQ(rhs->name_hint(), "x");
}
/// 2 * (3 * (long)x) - (x * 4) => 2 * x
void testSimplifyCasts() {
KernelScope kernel_scope;
VarHandle x("x", kLong);
ExprHandle body =
(ExprHandle(2) * ((ExprHandle(3) * x)) - (x * ExprHandle(4)));
ExprHandle simplified = IRSimplifier::simplify(body);
const Mul* root = simplified.AsNode<Mul>();
ASSERT_NE(root, nullptr);
const LongImm* lhs = dynamic_cast<const LongImm*>(root->lhs());
ASSERT_NE(lhs, nullptr);
ASSERT_EQ(lhs->value(), 2);
const Var* rhs = dynamic_cast<const Var*>(root->rhs());
ASSERT_NE(rhs, nullptr);
ASSERT_EQ(rhs->name_hint(), "x");
}
/// (x + 0) * 1 => x
void testSimplifyEliminatesNoOps() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
ExprHandle body = (x + ExprHandle(0)) * 1;
ExprHandle simplified = IRSimplifier::simplify(body);
const Var* root = simplified.AsNode<Var>();
ASSERT_NE(root, nullptr);
ASSERT_EQ(root->name_hint(), "x");
}
/// Cannot simplify this.
void testSimplifyMultiVar() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = x * 24 + y * 34;
ExprHandle simplified = IRSimplifier::simplify(body);
const Add* root = simplified.AsNode<Add>();
ASSERT_NE(root, nullptr);
const Mul* lhs = dynamic_cast<const Mul*>(root->lhs());
ASSERT_NE(lhs, nullptr);
const Var* varX = dynamic_cast<const Var*>(lhs->rhs());
ASSERT_NE(varX, nullptr);
ASSERT_EQ(varX->name_hint(), "y");
const Mul* rhs = dynamic_cast<const Mul*>(root->rhs());
ASSERT_NE(rhs, nullptr);
const Var* varY = dynamic_cast<const Var*>(rhs->rhs());
ASSERT_NE(varY, nullptr);
ASSERT_EQ(varY->name_hint(), "x");
}
// x + 2 + y => x + y + 2
void testSimplifyReorderings() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = x + 2 + y;
ExprHandle simplified = IRSimplifier::simplify(body);
const Add* root = simplified.AsNode<Add>();
ASSERT_NE(root, nullptr);
IS_NODE_WITH_NAME(Add, root->lhs(), rhs);
IS_VAR_WITH_NAME(rhs->lhs(), "x");
IS_VAR_WITH_NAME(rhs->rhs(), "y");
IS_IMM_WITH_VAL(Int, root->rhs(), 2);
}
/// y + x * 0 => y
void testSimplifyEliminatesVar() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = y + x * ExprHandle(0);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "y");
}
void testSimplifyAdds() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
{
// (x + y) + (x + y) => 2 * (x + y)
ExprHandle body = (x + y) + (x + y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), root);
IS_IMM_WITH_VAL(Int, root->lhs(), 2);
IS_NODE_WITH_NAME(Add, root->rhs(), add);
IS_VAR_WITH_NAME(add->lhs(), "y");
IS_VAR_WITH_NAME(add->rhs(), "x");
}
{
// (x * y) + (x * y) => 2 * (x * y)
ExprHandle body = (x * y) + (x * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), root);
IS_IMM_WITH_VAL(Int, root->lhs(), 2);
IS_NODE_WITH_NAME(Mul, root->rhs(), mul);
IS_VAR_WITH_NAME(mul->lhs(), "x");
IS_VAR_WITH_NAME(mul->rhs(), "y");
}
{
// (x - y) + (x - y) => -2 * (y - x)
ExprHandle body = (x - y) + (x - y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), -2);
IS_NODE_WITH_NAME(Sub, mul->rhs(), rhs);
IS_VAR_WITH_NAME(rhs->lhs(), "y");
IS_VAR_WITH_NAME(rhs->rhs(), "x");
}
{
// (x + x + x + x) => 4 * x
ExprHandle body = (x + x + x + x);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), root);
IS_IMM_WITH_VAL(Int, root->lhs(), 4);
IS_VAR_WITH_NAME(root->rhs(), "x");
}
{
// (x + 0) => x.
ExprHandle body = x + 0;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// (x + 0.f) => float(x).
ExprHandle body = x + 0.f;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Cast, simplified.node(), cast);
ASSERT_EQ(cast->dtype().scalar_type(), ScalarType::Float);
IS_VAR_WITH_NAME(cast->src_value(), "x");
}
}
void testSimplifyMuls() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
{
// (x + y) * (x + y) => (x + y) * (x + y)
// We don't attempt to simplify mulitplication of polynomials since the
// result is only very rarely more efficient.
ExprHandle body = (x + y) * (x + y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_NODE_WITH_NAME(Add, mul->lhs(), lhs);
IS_VAR_WITH_NAME(lhs->lhs(), "y");
IS_VAR_WITH_NAME(lhs->rhs(), "x");
IS_NODE_WITH_NAME(Add, mul->rhs(), rhs);
IS_VAR_WITH_NAME(rhs->lhs(), "y");
IS_VAR_WITH_NAME(rhs->rhs(), "x");
}
{
// x * y * x * y => x * x * y * y
// These get reordered only.
ExprHandle body = x * y * x * y;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul1);
IS_NODE_WITH_NAME(Mul, mul1->lhs(), mul2);
IS_NODE_WITH_NAME(Mul, mul2->lhs(), mul3);
IS_VAR_WITH_NAME(mul1->rhs(), "y");
IS_VAR_WITH_NAME(mul2->rhs(), "y");
IS_VAR_WITH_NAME(mul3->lhs(), "x");
IS_VAR_WITH_NAME(mul3->rhs(), "x");
}
{
// 1 * (x * 1) => x
// Ones cancel cleanly.
ExprHandle body = ExprHandle(1) * (x * ExprHandle(1));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// 1.f * (x * 1.f) => x
// Even float ones cancel cleanly, but carry their type.
ExprHandle body = ExprHandle(1.f) * (x * ExprHandle(1.f));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Cast, simplified.node(), cast);
ASSERT_EQ(cast->dtype().scalar_type(), ScalarType::Float);
IS_VAR_WITH_NAME(cast->src_value(), "x");
}
{
// 1 * (x * 1.f) => x
// One float is enough to cast the expr.
ExprHandle body = ExprHandle(1) * (x * ExprHandle(1.f));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Cast, simplified.node(), cast);
ASSERT_EQ(cast->dtype().scalar_type(), ScalarType::Float);
IS_VAR_WITH_NAME(cast->src_value(), "x");
}
{
// 1 * (x * 0) => 0
// Zeroes are eliminated.
ExprHandle body = ExprHandle(1) * (x * ExprHandle(0));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 0);
}
{
// 1 * (x * 0) => 0
// But not for Float since nan * 0 = nan.
ExprHandle body = ExprHandle(1.f) * (x * ExprHandle(0.f));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_NODE_WITH_NAME(Cast, mul->lhs(), cast);
ASSERT_EQ(cast->dtype().scalar_type(), ScalarType::Float);
IS_VAR_WITH_NAME(cast->src_value(), "x");
IS_IMM_WITH_VAL(Float, mul->rhs(), 0.0);
}
{
// (x - y) * (x - y) => (x - y) * (x - y)
// As with Add we don't attempt simplification of this.
ExprHandle body = (x - y) * (x - y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_NODE_WITH_NAME(Sub, mul->lhs(), lhs);
IS_VAR_WITH_NAME(lhs->lhs(), "x");
IS_VAR_WITH_NAME(lhs->rhs(), "y");
IS_NODE_WITH_NAME(Sub, mul->rhs(), rhs);
IS_VAR_WITH_NAME(rhs->lhs(), "x");
IS_VAR_WITH_NAME(rhs->rhs(), "y");
}
{
// (x + y) * (x - y) => (x - y) * (x - y)
// Don't simplify with different ops on each side.
ExprHandle body = (x + y) * (x - y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_NODE_WITH_NAME(Add, mul->lhs(), lhs);
IS_VAR_WITH_NAME(lhs->lhs(), "y");
IS_VAR_WITH_NAME(lhs->rhs(), "x");
IS_NODE_WITH_NAME(Sub, mul->rhs(), rhs);
IS_VAR_WITH_NAME(rhs->lhs(), "x");
IS_VAR_WITH_NAME(rhs->rhs(), "y");
}
}
// Sub an expr from itself will result in zero.
void testSimplifySubs() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
{
// (x + y) - (x + y) => 0
ExprHandle body = (x + y) - (x + y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 0);
}
{
// (x * y) - (x * y) => 0
ExprHandle body = (x * y) - (x * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 0);
}
{
// (x - y) - (x - y) => 0
ExprHandle body = (x - y) - (x - y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 0);
}
{
// (x + y) - 2 * (x + y) => -1 * (x + y)
ExprHandle body = (x + y) - ExprHandle(2) * (x + y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), -1);
IS_NODE_WITH_NAME(Add, mul->rhs(), add);
IS_VAR_WITH_NAME(add->lhs(), "y");
IS_VAR_WITH_NAME(add->rhs(), "x");
}
{
// (x + y) - y => x
ExprHandle body = (x + y) - y;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// (x - 0) => x.
ExprHandle body = x - 0;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// (x - 0.f) => x.
// Simple enough to cancel in float.
ExprHandle body = x - ExprHandle(0.f);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Cast, simplified.node(), cast);
ASSERT_EQ(cast->dtype().scalar_type(), ScalarType::Float);
IS_VAR_WITH_NAME(cast->src_value(), "x");
}
{
// (x - (float)(y - y)) => x.
ExprHandle body = x - Cast::make(kFloat, y - y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Cast, simplified.node(), cast);
ASSERT_EQ(cast->dtype().scalar_type(), ScalarType::Float);
IS_VAR_WITH_NAME(cast->src_value(), "x");
}
{
// (x - y) - y => x - 2 * y
ExprHandle body = (x - y) - y;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Sub, simplified.node(), sub);
IS_VAR_WITH_NAME(sub->lhs(), "x");
IS_NODE_WITH_NAME(Mul, sub->rhs(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 2);
IS_VAR_WITH_NAME(mul->rhs(), "y");
}
{
// 2 * x - x => x
ExprHandle body = (ExprHandle(2) * x) - x;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// x - 2 * x = -1 * x
// We don't have a unary negate, but this could be 0 -x I guess?
ExprHandle body = x - (ExprHandle(2) * x);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), -1);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
{
// (x + y + 5) * (x - x) => 0
// Cancelling out one side of Mul cancels both.
ExprHandle body = (x + y + 5) * (x - x);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 0);
}
{
// Cancel out opaque modulus.
ExprHandle body = (x % y + 2) - (x % y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 2);
}
{
// Cancel out opaque modulus with a bit more going on.
ExprHandle body = (x % y + (x * 2 - x - y * 0) - x + 2) - (x % y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 2);
}
}
// Test that mixing ops together simplifies as expected.
void testSimplifyMultiOp() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
{
// (x * y) + (x - y) => (x + x * y) - y
ExprHandle body = (x * y) + (x - y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Sub, simplified.node(), sub);
IS_NODE_WITH_NAME(Add, sub->lhs(), add);
IS_VAR_WITH_NAME(add->lhs(), "x");
IS_NODE_WITH_NAME(Mul, add->rhs(), mul);
IS_VAR_WITH_NAME(mul->lhs(), "x");
IS_VAR_WITH_NAME(mul->rhs(), "y");
IS_VAR_WITH_NAME(sub->rhs(), "y");
}
{
// (x + y) - (x * y) => x + y - (x * y)
ExprHandle body = (x + y) - (x * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Sub, simplified.node(), sub);
IS_NODE_WITH_NAME(Add, sub->lhs(), add);
IS_NODE_WITH_NAME(Mul, sub->rhs(), mul);
IS_VAR_WITH_NAME(add->lhs(), "y");
IS_VAR_WITH_NAME(add->rhs(), "x");
IS_VAR_WITH_NAME(mul->lhs(), "x");
IS_VAR_WITH_NAME(mul->rhs(), "y");
}
{
// (x - y) - (x + y) => -2 * y
ExprHandle body = (x - y) - (x + y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), -2);
IS_VAR_WITH_NAME(mul->rhs(), "y");
}
{
// (x - 0) + (x * 1) - (x + 0) => x
ExprHandle body = (x - 0) + (x * 1) - (x + 0);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// (x - 0.f) + (x * 1.f) - (x + 0.f) => float(x) + float(x) - float(x)
// Even in Float simple terms cancel out, but the variable ones cannot.
ExprHandle body =
(x - ExprHandle(0.f)) + (x * ExprHandle(1.f)) - (x + ExprHandle(0.f));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Sub, simplified.node(), sub);
IS_NODE_WITH_NAME(Add, sub->lhs(), add);
IS_NODE_WITH_NAME(Cast, add->lhs(), cast1);
IS_VAR_WITH_NAME(cast1->src_value(), "x");
IS_NODE_WITH_NAME(Cast, add->rhs(), cast2);
IS_VAR_WITH_NAME(cast2->src_value(), "x");
IS_NODE_WITH_NAME(Cast, sub->rhs(), cast3);
IS_VAR_WITH_NAME(cast3->src_value(), "x");
}
}
// Test that chaining many ops together works as expected.
void testSimplifyManyOps() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
{
// x + y + x + x + y + y + x + y + x = 5 * x + 4 * y
ExprHandle body = x + y + x + x + y + y + x + y + x;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_NODE_WITH_NAME(Mul, add->lhs(), lhs);
IS_IMM_WITH_VAL(Int, lhs->lhs(), 5);
IS_VAR_WITH_NAME(lhs->rhs(), "x");
IS_NODE_WITH_NAME(Mul, add->rhs(), rhs);
IS_IMM_WITH_VAL(Int, rhs->lhs(), 4);
IS_VAR_WITH_NAME(rhs->rhs(), "y");
}
{
// x - y + x + x - y - y + x - y + x = 5 * x - 4 * y
ExprHandle body = x - y + x + x - y - y + x - y + x;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Sub, simplified.node(), add);
IS_NODE_WITH_NAME(Mul, add->lhs(), lhs);
IS_IMM_WITH_VAL(Int, lhs->lhs(), 5);
IS_VAR_WITH_NAME(lhs->rhs(), "x");
IS_NODE_WITH_NAME(Mul, add->rhs(), rhs);
IS_IMM_WITH_VAL(Int, rhs->lhs(), 4);
IS_VAR_WITH_NAME(rhs->rhs(), "y");
}
{
// x + y + x - x - y - y + x + y + x = 3 * x
ExprHandle body = x + y + x - x - y - y + x + y + x;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 3);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
}
void testSimplifyFactorization() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
{
// (2 * x) + (2 * y) => 2 * (x + y)
ExprHandle body = (ExprHandle(2) * x + ExprHandle(2) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 2);
IS_NODE_WITH_NAME(Add, mul->rhs(), add);
IS_VAR_WITH_NAME(add->lhs(), "y");
IS_VAR_WITH_NAME(add->rhs(), "x");
}
{
// Factorization when scalars have common divider.
// (2 * x) + (4 * y) => 2 * (2 * y + x)
ExprHandle body = (ExprHandle(2) * x + ExprHandle(4) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 2);
IS_NODE_WITH_NAME(Add, mul->rhs(), add);
IS_VAR_WITH_NAME(add->lhs(), "x");
IS_NODE_WITH_NAME(Mul, add->rhs(), mul2);
IS_IMM_WITH_VAL(Int, mul2->lhs(), 2);
IS_VAR_WITH_NAME(mul2->rhs(), "y");
}
{
// Factorization attempt without a common divider.
// (2 * x) + (5 * y) => (5 * y) + (2 * x)
ExprHandle body = (ExprHandle(2) * x + ExprHandle(5) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_NODE_WITH_NAME(Mul, add->lhs(), lhs);
IS_IMM_WITH_VAL(Int, lhs->lhs(), 5);
IS_VAR_WITH_NAME(lhs->rhs(), "y");
IS_NODE_WITH_NAME(Mul, add->rhs(), rhs);
IS_IMM_WITH_VAL(Int, rhs->lhs(), 2);
IS_VAR_WITH_NAME(rhs->rhs(), "x");
}
{
// Factorization after merging.
// (2 * x) + (4 * y) + (8 * x + 6 * y) => 10 * (x + y)
ExprHandle body = (ExprHandle(2) * x + ExprHandle(4) * y) +
(ExprHandle(8) * x + ExprHandle(6) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 10);
IS_NODE_WITH_NAME(Add, mul->rhs(), add);
IS_VAR_WITH_NAME(add->lhs(), "y");
IS_VAR_WITH_NAME(add->rhs(), "x");
}
{
// Factorization with common divider but different signs.
// (-2 * x) + (4 * y) => -2 * (x - 2 * y)
ExprHandle body = (ExprHandle(-2) * x + ExprHandle(4) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), -2);
IS_NODE_WITH_NAME(Sub, mul->rhs(), sub);
IS_VAR_WITH_NAME(sub->lhs(), "x");
IS_NODE_WITH_NAME(Mul, sub->rhs(), mul2);
IS_IMM_WITH_VAL(Int, mul2->lhs(), 2);
IS_VAR_WITH_NAME(mul2->rhs(), "y");
}
}
// (4 * x + y + z * 2) + (4 * x + y + z * 4) => 2 * (y + 3 * z + 4 * x)
void testSimplifyFactorizeUneven() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
VarHandle z("z", kInt);
ExprHandle body =
(ExprHandle(4) * x + y + z * 2) + (ExprHandle(4) * x + y + z * 4);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), root);
IS_IMM_WITH_VAL(Int, root->lhs(), 2);
IS_NODE_WITH_NAME(Add, root->rhs(), add1);
IS_NODE_WITH_NAME(Add, add1->lhs(), add2);
IS_VAR_WITH_NAME(add2->lhs(), "y");
IS_NODE_WITH_NAME(Mul, add2->rhs(), zmul);
IS_NODE_WITH_NAME(Mul, add1->rhs(), xmul);
IS_IMM_WITH_VAL(Int, xmul->lhs(), 4);
IS_VAR_WITH_NAME(xmul->rhs(), "x");
IS_IMM_WITH_VAL(Int, zmul->lhs(), 3);
IS_VAR_WITH_NAME(zmul->rhs(), "z");
}
// (x * y) + (2 * x) * (x + y) => 3 * (x * y) + 2 * (x * x)
// This is kind of a placeholder test for variable factorization.
void testSimplifyDeeperTerms() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = (x * y) + (ExprHandle(2) * x) * (x + y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_NODE_WITH_NAME(Mul, add->lhs(), lhs);
IS_IMM_WITH_VAL(Int, lhs->lhs(), 3);
IS_NODE_WITH_NAME(Mul, lhs->rhs(), xyTerm);
IS_VAR_WITH_NAME(xyTerm->lhs(), "x");
IS_VAR_WITH_NAME(xyTerm->rhs(), "y");
IS_NODE_WITH_NAME(Mul, add->rhs(), rhs);
IS_IMM_WITH_VAL(Int, rhs->lhs(), 2);
IS_NODE_WITH_NAME(Mul, rhs->rhs(), xxTerm);
IS_VAR_WITH_NAME(xxTerm->rhs(), "x");
IS_VAR_WITH_NAME(xxTerm->rhs(), "x");
}
// Tests the difference between two less trivial expressions.
// (m * (1 * n_1) + (n + 1)) - (m * (1 * n_1) + n) => 1
void testSimplifyDeeperDifference() {
KernelScope kernel_scope;
VarHandle n("n", kInt);
VarHandle n_1("n_1", kInt);
VarHandle m("m", kInt);
ExprHandle body =
(m * (ExprHandle(1) * n_1) + (n + 1)) - (m * (ExprHandle(1) * n_1) + n);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 1);
}
// Test constant folding into the difference between expressions.
// 2 + char((m * (1 * n_1) + (n + 1)) - (m * (1 * n_1) + n)) => 3
void testSimplifyFoldComplexDifference() {
KernelScope kernel_scope;
VarHandle n("n", kInt);
VarHandle n_1("n_1", kInt);
VarHandle m("m", kInt);
ExprHandle body =
(IntImm::make(2) +
(Cast::make(
kChar,
(m * (ExprHandle(1) * n_1) + (n + 1)) -
(m * (ExprHandle(1) * n_1) + n))));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 3);
}
void testSimplifyIfComponents() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = IfThenElse::make(
((ExprHandle(5) - ExprHandle(4)) * x) > y,
ExprHandle(2) * x - x,
ExprHandle(2) * y - y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(IfThenElse, simplified.node(), ifexpr);
IS_NODE_WITH_NAME(CompareSelect, ifexpr->condition(), cmp);
ASSERT_EQ(cmp->compare_select_op(), kGT);
IS_VAR_WITH_NAME(cmp->lhs(), "x");
IS_VAR_WITH_NAME(cmp->rhs(), "y");
IS_VAR_WITH_NAME(ifexpr->true_value(), "x");
IS_VAR_WITH_NAME(ifexpr->false_value(), "y");
}
void testSimplifyOpaqueTerms() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
{
// 2 * x/y * x - x/y * y => y * x/y
ExprHandle body = ((ExprHandle(2)) * (x / y) * y) - ((x / y) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_VAR_WITH_NAME(mul->lhs(), "y");
IS_NODE_WITH_NAME(Div, mul->rhs(), div);
IS_VAR_WITH_NAME(div->lhs(), "x");
IS_VAR_WITH_NAME(div->rhs(), "y");
}
{
// x%y - (x%y - 1) => 1
ExprHandle body = (x % y) - ((x % y) - 1);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_IMM_WITH_VAL(Int, simplified.node(), 1);
}
}
void testSimplifySymbolicMinMax() {
KernelScope kernel_scope;
{
// Minimum with constant difference between terms.
VarHandle x("x", kInt);
ExprHandle body = Min::make(x + 3, x + 7, true);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_VAR_WITH_NAME(add->lhs(), "x");
IS_IMM_WITH_VAL(Int, add->rhs(), 3);
}
{
// Maximum with constant difference between terms.
VarHandle x("x", kInt);
ExprHandle body = Max::make(x + 3, x + 7, true);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_VAR_WITH_NAME(add->lhs(), "x");
IS_IMM_WITH_VAL(Int, add->rhs(), 7);
}
{
// Can't simplify multiples because of signedness of variable component.
// TODO: maybe we could for unsigned types?
VarHandle x("x", kInt);
ExprHandle body = Max::make(x * 3, x * 7, true);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE(Max, simplified.node());
}
}
void testSimplifyWontReorderFloat() {
KernelScope kernel_scope;
{
// 3 * (3 * x) - 3 * (3 * y) => -9 * (y - x)
// This is an expression we can simplify.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ExprHandle(3) * (ExprHandle(3) * x) -
ExprHandle(3) * (ExprHandle(3) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), -9);
IS_NODE_WITH_NAME(Sub, mul->rhs(), sub);
IS_VAR_WITH_NAME(sub->lhs(), "y");
IS_VAR_WITH_NAME(sub->rhs(), "x");
}
{
// 3 * (3 * x) - 3 * (3 * y) => 3 * (3 * x) - 3 * (3 * y).
// If the vars are floating point, ops are not associative and we can't
// reorder.
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
ExprHandle body = ExprHandle(3) * (ExprHandle(3) * x) -
ExprHandle(3) * (ExprHandle(3) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Sub, simplified.node(), sub);
IS_NODE_WITH_NAME(Mul, sub->lhs(), lhsMul);
IS_IMM_WITH_VAL(Float, lhsMul->lhs(), 3);
IS_NODE_WITH_NAME(Mul, lhsMul->rhs(), lhsVarMul);
IS_IMM_WITH_VAL(Float, lhsVarMul->lhs(), 3);
IS_VAR_WITH_NAME(lhsVarMul->rhs(), "x");
IS_NODE_WITH_NAME(Mul, sub->rhs(), rhsMul);
IS_IMM_WITH_VAL(Float, rhsMul->lhs(), 3);
IS_NODE_WITH_NAME(Mul, rhsMul->rhs(), rhsVarMul);
IS_IMM_WITH_VAL(Float, rhsVarMul->lhs(), 3);
IS_VAR_WITH_NAME(rhsVarMul->rhs(), "y");
}
{
// 3 * (3 * x) - 3 * (3 * y) => 3 * (3 * x) - (9 * y).
// We will simplify subexprs if they dont reorder floating point ops.
VarHandle x("x", kDouble);
VarHandle y("y", kInt);
ExprHandle body = ExprHandle(3) * (ExprHandle(3) * x) -
ExprHandle(3) * (ExprHandle(3) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Sub, simplified.node(), sub);
IS_NODE_WITH_NAME(Mul, sub->lhs(), lhsMul);
IS_IMM_WITH_VAL(Double, lhsMul->lhs(), 3);
IS_NODE_WITH_NAME(Mul, lhsMul->rhs(), lhsVarMul);
IS_IMM_WITH_VAL(Double, lhsVarMul->lhs(), 3);
IS_VAR_WITH_NAME(lhsVarMul->rhs(), "x");
IS_NODE_WITH_NAME_AND_CAST(Mul, sub->rhs(), rhsMul, Double);
IS_IMM_WITH_VAL(Int, rhsMul->lhs(), 9);
IS_VAR_WITH_NAME(rhsMul->rhs(), "y");
}
{
// Prevent reordering if FP propagated from dtypes.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ExprHandle(3.f) * (ExprHandle(3) * x) -
ExprHandle(3) * (ExprHandle(3.f) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Sub, simplified.node(), sub);
IS_NODE_WITH_NAME(Mul, sub->lhs(), lhsMul);
IS_IMM_WITH_VAL(Float, lhsMul->lhs(), 3);
IS_NODE_WITH_NAME_AND_CAST(Mul, lhsMul->rhs(), lhsVarMul, Float);
IS_IMM_WITH_VAL(Int, lhsVarMul->lhs(), 3);
IS_VAR_WITH_NAME(lhsVarMul->rhs(), "x");
IS_NODE_WITH_NAME(Mul, sub->rhs(), rhsMul);
IS_IMM_WITH_VAL(Float, rhsMul->lhs(), 3);
IS_NODE_WITH_NAME(Mul, rhsMul->rhs(), rhsVarMul);
IS_IMM_WITH_VAL(Float, rhsVarMul->lhs(), 3);
IS_NODE_WITH_NAME(Cast, rhsVarMul->rhs(), yCast);
IS_VAR_WITH_NAME(yCast->src_value(), "y");
}
{
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
// x%y - (x%y - 1) => x%y - (x%y - 1).
// We wont reorder opaque ops if they are FP.
ExprHandle body = (x % y) - ((x % y) - 1);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Sub, simplified.node(), sub);
IS_NODE_WITH_NAME(Mod, sub->lhs(), lhsMod);
IS_VAR_WITH_NAME(lhsMod->lhs(), "x");
IS_VAR_WITH_NAME(lhsMod->rhs(), "y");
IS_NODE_WITH_NAME(Sub, sub->rhs(), rhsSub);
IS_NODE_WITH_NAME(Mod, rhsSub->lhs(), rhsMod);
IS_VAR_WITH_NAME(rhsMod->lhs(), "x");
IS_VAR_WITH_NAME(rhsMod->rhs(), "y");
IS_IMM_WITH_VAL(Float, rhsSub->rhs(), 1);
}
}
void testSimplifyRoundModPattern() {
KernelScope kernel_scope;
{
// (x/y)*y + x%y => x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ((x / y) * y) + (x % y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// Reverse order.
// x%y + (x/y)*y => x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = (x % y) + ((x / y) * y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// Non opaque denominator.
// (x / (4+y)) * (4+y)) + (x % (y + 4)) => x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ((x / (ExprHandle(4) + y)) * (ExprHandle(4) + y)) +
(x % (y + ExprHandle(4)));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// Reverse order.
// (x % (y + 4)) + (x / (4+y)) * (4+y)) => x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = (x % (y + ExprHandle(4))) +
((x / (ExprHandle(4) + y)) * (ExprHandle(4) + y));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// Opaque denominator.
// (x / (2/y)) * (2/y)) + (x % (2/y)) => x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ((x / (ExprHandle(2) / y)) * (ExprHandle(2) / y)) +
(x % (ExprHandle(2) / y));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// Non opaque numerator
// ((2*x)/y * y) + ((2*x) % y) => 2 * x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body =
(((ExprHandle(2) * x) / y) * y) + ((ExprHandle(2) * x) % y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 2);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
{
// Opaque numerator.
// ((x/2) / y * y) + (x/2 % y) => x / 2.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body =
(((x / ExprHandle(2)) / y) * y) + ((x / ExprHandle(2)) % y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Div, simplified.node(), div);
IS_VAR_WITH_NAME(div->lhs(), "x");
IS_IMM_WITH_VAL(Int, div->rhs(), 2);
}
{
// Numerator and denominator.
// ((2*x)/(2*y) * (2*y)) + ((2*x) % (2*y)) => 2 * x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body =
(((ExprHandle(2) * x) / (ExprHandle(2) * y)) * (ExprHandle(2) * y)) +
((ExprHandle(2) * x) % (ExprHandle(2) * y));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 2);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
{
// Reverse order.
// ((2*x) % (2*y)) + ((2*x)/(2*y) * (2*y)) => 2 * x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ((ExprHandle(2) * x) % (ExprHandle(2) * y)) +
(((ExprHandle(2) * x) / (ExprHandle(2) * y)) * (ExprHandle(2) * y));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 2);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
{
// Negated Subtraction of Round Mod.
// (x/y) * y - (0 - x%y) => x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ((x / y) * y) - (ExprHandle(0) - (x % y));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// Other terms are preserved.
// (x/y)*y + x%y + (y * x) => x + (y * x).
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ((x / y) * y) + (x % y) + (y * x);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_VAR_WITH_NAME(add->lhs(), "x");
IS_NODE_WITH_NAME(Mul, add->rhs(), mul);
IS_VAR_WITH_NAME(mul->lhs(), "x");
IS_VAR_WITH_NAME(mul->rhs(), "y");
}
{
// Sanity checking we wont do the optimization on floats.
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
ExprHandle body = ((x / y) * y) + (x % y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_NODE_WITH_NAME(Mul, add->lhs(), roundMul);
IS_NODE_WITH_NAME(Div, roundMul->lhs(), roundDiv);
IS_VAR_WITH_NAME(roundDiv->lhs(), "x");
IS_VAR_WITH_NAME(roundDiv->rhs(), "y");
IS_VAR_WITH_NAME(roundMul->rhs(), "y");
IS_NODE_WITH_NAME(Mod, add->rhs(), mod);
IS_VAR_WITH_NAME(mod->lhs(), "x");
IS_VAR_WITH_NAME(mod->rhs(), "y");
}
{
// Sanity check we wont do it if the mod term doesn't match.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
VarHandle z("z", kInt);
ExprHandle body = ((x / y) * y) + (x % z);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_NODE_WITH_NAME(Mul, add->lhs(), roundMul);
IS_VAR_WITH_NAME(roundMul->lhs(), "y");
IS_NODE_WITH_NAME(Div, roundMul->rhs(), roundDiv);
IS_VAR_WITH_NAME(roundDiv->lhs(), "x");
IS_VAR_WITH_NAME(roundDiv->rhs(), "y");
IS_NODE_WITH_NAME(Mod, add->rhs(), mod);
IS_VAR_WITH_NAME(mod->lhs(), "x");
IS_VAR_WITH_NAME(mod->rhs(), "z");
}
{
// Sanity check we wont do it if the div term doesn't match.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
VarHandle z("z", kInt);
ExprHandle body = (y * (x / z)) + (x % y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_NODE_WITH_NAME(Mul, add->lhs(), roundMul);
IS_VAR_WITH_NAME(roundMul->lhs(), "y");
IS_NODE_WITH_NAME(Div, roundMul->rhs(), roundDiv);
IS_VAR_WITH_NAME(roundDiv->lhs(), "x");
IS_VAR_WITH_NAME(roundDiv->rhs(), "z");
IS_NODE_WITH_NAME(Mod, add->rhs(), mod);
IS_VAR_WITH_NAME(mod->lhs(), "x");
IS_VAR_WITH_NAME(mod->rhs(), "y");
}
{
// Sanity check we wont do it if the mul term doesn't match.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
VarHandle z("z", kInt);
ExprHandle body = ((x / y) * z) + (x % y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_NODE_WITH_NAME(Mul, add->lhs(), roundMul);
IS_VAR_WITH_NAME(roundMul->lhs(), "z");
IS_NODE_WITH_NAME(Div, roundMul->rhs(), roundDiv);
IS_VAR_WITH_NAME(roundDiv->lhs(), "x");
IS_VAR_WITH_NAME(roundDiv->rhs(), "y");
IS_NODE_WITH_NAME(Mod, add->rhs(), mod);
IS_VAR_WITH_NAME(mod->lhs(), "x");
IS_VAR_WITH_NAME(mod->rhs(), "y");
}
}
void testSimplifyRoundModPatternFactorization() {
KernelScope kernel_scope;
{
// Full factorization.
// 2 * (x/y * y) + 2 * (x%y) => 2 * x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ExprHandle(2) * ((x / y) * y) + ExprHandle(2) * (x % y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 2);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
{
// Partial Factorization.
// 32 * (x/y) + 4 * (x % y) => 4 * x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = ExprHandle(32) * (x / 8) + ExprHandle(4) * (x % 8);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 4);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
{
// Factorization requiring constant folding.
// 20 * (x / (16 / 2)) * 2 + (11 % 6) * (x % (7+1)) => 5 * x.
VarHandle x("x", kInt);
ExprHandle body = ExprHandle(40) * (x / (ExprHandle(16) / 2)) +
(ExprHandle(11) % 6) * (x % (ExprHandle(7) + 1));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 5);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
{
VarHandle x("x", kInt);
ExprHandle body = (x / 5) * 10 + ExprHandle(2) * (x % 5);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 2);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
{
VarHandle x("x", kInt);
ExprHandle body = (x / 10) * 0 + x % 5;
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mod, simplified.node(), mod);
IS_VAR_WITH_NAME(mod->lhs(), "x");
IS_IMM_WITH_VAL(Int, mod->rhs(), 5);
}
}
void testSimplifyRoundModPatternMultivar() {
KernelScope kernel_scope;
{
// Multivar.
// (x/8) * 8 + (y/5)*5 + x%8 + y%5 => y + x.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = (x / ExprHandle(8) * ExprHandle(8)) +
(y / ExprHandle(5) * ExprHandle(5)) + (x % 8) + (y % 5);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_VAR_WITH_NAME(add->lhs(), "y");
IS_VAR_WITH_NAME(add->rhs(), "x");
}
{
// Find the right var.
// (y/8) * 8 x%8 + y%8 + z%8 => z%8 + x%8 + y
VarHandle x("x", kInt);
VarHandle y("y", kInt);
VarHandle z("z", kInt);
ExprHandle body =
(y / ExprHandle(8) * ExprHandle(8)) + (x % 8) + (y % 8) + (z % 8);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_NODE_WITH_NAME(Add, add->lhs(), add2);
IS_NODE_WITH_NAME(Mod, add2->lhs(), xMod);
IS_VAR_WITH_NAME(xMod->lhs(), "x");
IS_IMM_WITH_VAL(Int, xMod->rhs(), 8);
IS_VAR_WITH_NAME(add2->rhs(), "y");
IS_NODE_WITH_NAME(Mod, add->rhs(), zMod);
IS_VAR_WITH_NAME(zMod->lhs(), "z");
IS_IMM_WITH_VAL(Int, zMod->rhs(), 8);
}
{
// Compound.
// (x + (z + 512 * y) % 16) + 16 * ((z + 512 * y) / 16) => x + (z + 512 *
// y).
VarHandle x("x", kInt);
VarHandle y("y", kInt);
VarHandle z("z", kInt);
ExprHandle body = x + (z + ExprHandle(512) * y) % ExprHandle(16) +
ExprHandle(16) * ((z + ExprHandle(512) * y) / ExprHandle(16));
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Add, simplified.node(), add);
IS_VAR_WITH_NAME(add->lhs(), "x");
IS_NODE_WITH_NAME(Add, add->rhs(), add2);
IS_VAR_WITH_NAME(add2->lhs(), "z");
IS_NODE_WITH_NAME(Mul, add2->rhs(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 512);
IS_VAR_WITH_NAME(mul->rhs(), "y");
}
}
void testSimplifyDivisionScalarFactorization() {
KernelScope kernel_scope;
{
// Simple factorization of numerator and denominator.
// 8x / 4y => 2x / y.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = (x * 8) / (y * 4);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Div, simplified.node(), div);
IS_NODE_WITH_NAME(Mul, div->lhs(), lhs);
IS_IMM_WITH_VAL(Int, lhs->lhs(), 2);
IS_VAR_WITH_NAME(lhs->rhs(), "x");
IS_VAR_WITH_NAME(div->rhs(), "y");
}
{
// Don't change anything if we can't factorize.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = (x * 7) / (y * 4);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Div, simplified.node(), div);
IS_NODE_WITH_NAME(Mul, div->lhs(), lhs);
IS_IMM_WITH_VAL(Int, lhs->lhs(), 7);
IS_VAR_WITH_NAME(lhs->rhs(), "x");
IS_NODE_WITH_NAME(Mul, div->rhs(), rhs);
IS_IMM_WITH_VAL(Int, rhs->lhs(), 4);
IS_VAR_WITH_NAME(rhs->rhs(), "y");
}
{
// Don't reorder floats.
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
ExprHandle body = (x * 8) / (y * 4);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Div, simplified.node(), div);
IS_NODE_WITH_NAME(Mul, div->lhs(), lhs);
IS_VAR_WITH_NAME(lhs->lhs(), "x");
IS_IMM_WITH_VAL(Float, lhs->rhs(), 8.f);
IS_NODE_WITH_NAME(Mul, div->rhs(), rhs);
IS_VAR_WITH_NAME(rhs->lhs(), "y");
IS_IMM_WITH_VAL(Float, rhs->rhs(), 4.f);
}
{
// Sanity check we do nothing if there are only scalar parts.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = (x * 1) / (y * 1);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Div, simplified.node(), div);
IS_VAR_WITH_NAME(div->lhs(), "x");
IS_VAR_WITH_NAME(div->rhs(), "y");
}
{
// Can factorize amounts of variables.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = (x + x + x + x) / (y + y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Div, simplified.node(), div);
IS_NODE_WITH_NAME(Mul, div->lhs(), lhs);
IS_IMM_WITH_VAL(Int, lhs->lhs(), 2);
IS_VAR_WITH_NAME(lhs->rhs(), "x");
IS_VAR_WITH_NAME(div->rhs(), "y");
}
}
void testSimplifyConstantBranches() {
KernelScope kernel_scope;
{
// If the condition is constant true then take the true_value.
// 1 ? x : y => x
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle t(1);
ExprHandle body = IfThenElse::make(t, x, y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// If the condition is constant false then take the false_value.
// 0 ? x : y => y
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle t(0);
ExprHandle body = IfThenElse::make(t, x, y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "y");
}
{
// condition is simplified before checking.
// (x-x) ? x : y => y
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = IfThenElse::make(x - x, x, y);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "y");
}
{
// If both branches are the same then don't do the condition.
// y ? x : x => x
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = IfThenElse::make(y, x, x);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_VAR_WITH_NAME(simplified.node(), "x");
}
{
// If both branches simplify to the same thing it still works.
// y ? (x + x) : (2 * x) => x
VarHandle x("x", kInt);
VarHandle y("y", kInt);
ExprHandle body = IfThenElse::make(y, x + x, ExprHandle(2) * x);
ExprHandle simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(Mul, simplified.node(), mul);
IS_IMM_WITH_VAL(Int, mul->lhs(), 2);
IS_VAR_WITH_NAME(mul->rhs(), "x");
}
}
void testSimplifyConstantCond() {
KernelScope kernel_scope;
{
// If the condition is constant true then take the true_value.
// 1 ? A[0] = 1 : B[0] = 1 => A[0] = 1
Buffer a(BufHandle("A", {1}, kInt));
Buffer b(BufHandle("B", {1}, kInt));
ExprHandle condition(1);
Stmt* true_val = Store::make(a, {0}, 1, 1);
Stmt* false_val = Store::make(b, {0}, 1, 1);
Cond* body = new Cond(condition.node(), true_val, false_val);
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "A");
}
{
// If the condition is constant false then take the false_value.
// 0 ? A[0] = 1 : B[0] = 1 => B[0] = 1
Buffer a(BufHandle("A", {1}, kInt));
Buffer b(BufHandle("B", {1}, kInt));
ExprHandle condition(0);
Stmt* true_val = Store::make(a, {0}, 1, 1);
Stmt* false_val = Store::make(b, {0}, 1, 1);
Stmt* body = new Cond(condition.node(), true_val, false_val);
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "B");
}
{
// condition is simplified before checking.
// (x-x) ? A[0] = 1 : B[0] = 1 => B[0] = 1
VarHandle x("x", kInt);
Buffer a(BufHandle("A", {1}, kInt));
Buffer b(BufHandle("B", {1}, kInt));
ExprHandle condition(x - x);
Stmt* true_val = Store::make(a, {0}, 1, 1);
Stmt* false_val = Store::make(b, {0}, 1, 1);
Stmt* body = new Cond(condition.node(), true_val, false_val);
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "B");
}
{
// If both branches are the same then don't do the condition.
// x ? A[0] = x : A[0] = x => A[0] = x
VarHandle x("x", kInt);
Buffer a(BufHandle("A", {1}, kInt));
ExprHandle condition(x - x);
Stmt* true_val = Store::make(a, {0}, x, 1);
Stmt* false_val = Store::make(a, {0}, x, 1);
Stmt* body = new Cond(condition.node(), true_val, false_val);
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "A");
}
{
// If both branches simplify to the same thing it still works.
// x ? (x + x) : (2 * x) => x
VarHandle x("x", kInt);
Buffer a(BufHandle("A", {1}, kInt));
ExprHandle condition(x - x);
Stmt* true_val = Store::make(a, {0}, ExprHandle(2) * x, 1);
Stmt* false_val = Store::make(a, {0}, x + x, 1);
Stmt* body = new Cond(condition.node(), true_val, false_val);
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "A");
}
{
// But not if they dont
// x ? x : (2 * x) => x ? x : (2 * x)
VarHandle x("x", kInt);
Buffer a(BufHandle("A", {1}, kInt));
ExprHandle condition(x);
Stmt* true_val = Store::make(a, {0}, x, 1);
Stmt* false_val = Store::make(a, {0}, ExprHandle(2) * x, 1);
Stmt* body = new Cond(condition.node(), true_val, false_val);
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
ASSERT_EQ(block, nullptr);
}
}
void testSimplifyEliminateEmptyCond() {
KernelScope kernel_scope;
// If the branches are empty in different ways, eliminate.
{
VarHandle x("x", kInt);
ExprHandle condition(x);
Stmt* true_val = new Block({});
Stmt* body = new Cond(condition.node(), true_val, nullptr);
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
ASSERT_NE(block, nullptr);
ASSERT_EQ(block->nstmts(), 0);
}
{
VarHandle x("x", kInt);
ExprHandle condition(x);
Stmt* false_val = new Block({});
Stmt* body = new Cond(condition.node(), nullptr, false_val);
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
ASSERT_NE(block, nullptr);
ASSERT_EQ(block->nstmts(), 0);
}
}
void testSimplifyEliminateZeroLengthFor() {
KernelScope kernel_scope;
{
// Will eliminate zero loop For.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body =
For::make(i, 0, 0, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
ASSERT_EQ(block->nstmts(), 0);
}
{
// still works if start is not zero.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body =
For::make(i, 2, 2, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
ASSERT_EQ(block->nstmts(), 0);
}
{
// works if both terms are variable.
VarHandle x("x", kInt);
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body =
For::make(i, x, x, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
ASSERT_EQ(block->nstmts(), 0);
}
{
// works if one term simplifies down.
VarHandle x("x", kInt);
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body = For::make(
i, 0, x - x, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
ASSERT_EQ(block->nstmts(), 0);
}
{
// Sanity check does nothing if the condition is not met.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body =
For::make(i, 0, 3, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
IS_NODE(For, simplified);
}
}
void testSimplifyOneLoopFor() {
KernelScope kernel_scope;
{
// Will remove the loop if the body is run once.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body =
For::make(i, 0, 1, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "C");
IS_IMM_WITH_VAL(Int, store->flat_index(), 0);
}
{
// still works if start is not zero.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body =
For::make(i, 2, 3, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "C");
IS_IMM_WITH_VAL(Int, store->flat_index(), 2);
}
{
// works if both terms are variable.
VarHandle x("x", kInt);
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body = For::make(
i, x, x + 1, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "C");
IS_VAR_WITH_NAME(store->flat_index(), "x");
}
{
// works if one term simplifies down.
VarHandle x("x", kInt);
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body = For::make(
i, 0, x - x + 1, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "C");
IS_IMM_WITH_VAL(Int, store->flat_index(), 0);
}
{
// Sanity check does nothing if the condition is not met.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
auto body =
For::make(i, 0, 3, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
Stmt* simplified = IRSimplifier::simplify(body);
IS_NODE(For, simplified);
}
}
void testSimplifyForWontLoseLoopOptions() {
KernelScope kernel_scope;
{
// Sanity check does nothing if the condition is not met.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
LoopOptions options;
options.set_gpu_block_index(12);
auto body = For::make(
i, 0, 1, Store::make(c, {i}, Load::make(a, {i}, mask), mask), options);
Stmt* simplified = IRSimplifier::simplify(body);
IS_NODE_WITH_NAME(For, simplified, for_);
LoopOptions options2 = for_->loop_options();
ASSERT_EQ(options.gpu_block_index(), options2.gpu_block_index());
}
}
void testSimplifyMultilevelFor() {
KernelScope kernel_scope;
{
// Multiple layers of For will be simplified out.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto* body =
For::make(i, 0, 1, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
auto outer = For::make(j, 0, 1, body);
Stmt* simplified = IRSimplifier::simplify(outer);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "C");
IS_IMM_WITH_VAL(Int, store->flat_index(), 0);
}
{
// Will maintain an outer loop if the inner loop is eliminated.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto* body =
For::make(i, 0, 1, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
auto outer = For::make(j, 0, 2, body);
Stmt* simplified = IRSimplifier::simplify(outer);
For* for__ = static_cast<For*>(simplified);
IS_NODE_WITH_NAME(For, for__, for_);
IS_VAR_WITH_NAME(for_->var(), "j");
IS_IMM_WITH_VAL(Int, for_->start(), 0);
IS_IMM_WITH_VAL(Int, for_->stop(), 2);
Block* block = dynamic_cast<Block*>(for_->body());
ASSERT_NE(block, nullptr);
IS_NODE_WITH_NAME(Store, block->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "C");
IS_IMM_WITH_VAL(Int, store->flat_index(), 0);
}
{
// Will maintain inner loop if outer loops is eliminated.
Buffer a(BufHandle("A", {4}, kInt));
Buffer c(BufHandle("C", {4}, kInt));
auto mask = IntImm::make(1);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto* body =
For::make(i, 0, 2, Store::make(c, {i}, Load::make(a, {i}, mask), mask));
auto outer = For::make(j, 0, 1, body);
Stmt* simplified = IRSimplifier::simplify(outer);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(For, block->front(), for_);
IS_VAR_WITH_NAME(for_->var(), "i");
IS_IMM_WITH_VAL(Int, for_->start(), 0);
IS_IMM_WITH_VAL(Int, for_->stop(), 2);
IS_NODE_WITH_NAME(Store, for_->body()->front(), store);
IS_VAR_WITH_NAME(store->base_handle(), "C");
IS_VAR_WITH_NAME(store->flat_index(), "i");
}
}
void testSimplifyForCleansUp() {
KernelScope kernel_scope;
{
Buffer a("a", kFloat, {1, 12, 1});
VarHandle x("x", kInt);
Tensor* b = Compute(
"x",
{{1, "i"}, {12, "m"}, {1, "n"}},
[](const VarHandle& i, const VarHandle& m, const VarHandle& n) {
return i + m + n;
});
LoopNest l({b});
l.prepareForCodegen();
Stmt* body = l.root_stmt();
Stmt* simplified = IRSimplifier::simplify(body);
Block* block = dynamic_cast<Block*>(simplified);
IS_NODE_WITH_NAME(For, block->front(), for_);
// for is over "m".
IS_VAR_WITH_NAME(for_->var(), "m");
// x[m] = m;
IS_NODE_WITH_NAME(Store, for_->body()->front(), store);
IS_VAR_WITH_NAME(store->flat_index(), "m");
IS_VAR_WITH_NAME(store->value(), "m");
}
}
void testSimplifyEliminateEmptyFor() {
KernelScope kernel_scope;
{
// Flatten many layers around an empty block to an empty block.
Stmt* last = new Block({});
for (int i = 0; i < 11; ++i) {
VarHandle loopVar("loopVar", kInt);
last = For::make(loopVar, 0, 10, last);
}
Stmt* simplified = IRSimplifier::simplify(last);
IS_NODE_WITH_NAME(Block, simplified, block);
ASSERT_EQ(block->nstmts(), 0);
}
}
void testSimplifyFlattenBlock() {
KernelScope kernel_scope;
{
// Flatten multiple blocks down to one.
// { { { stmt1, stmt2 } } } => { stmt1, stmt2 }
Buffer a(BufHandle("A", {1}, kInt));
Store* store1 = Store::make(a, {0}, 1, 1);
Store* store2 = Store::make(a, {0}, 0, 1);
Block* block1 = new Block({store1, store2});
Block* block2 = new Block({block1});
Block* enclosing = new Block({block2});
Stmt* simplified = IRSimplifier::simplify(enclosing);
IS_NODE_WITH_NAME(Block, simplified, block);
ASSERT_EQ(block->nstmts(), 2);
IS_NODE_WITH_NAME(Store, block->front(), store1_);
IS_NODE_WITH_NAME(Store, block->back(), store2_);
ASSERT_EQ(store1->value(), store1_->value());
ASSERT_EQ(store2->value(), store2_->value());
}
{
// Flatten multiple sub blocks containing statements.
// { { stmt1 }, { stmt2 } } => { stmt1, stmt2 }
Buffer a(BufHandle("A", {1}, kInt));
Store* store1 = Store::make(a, {0}, 1, 1);
Store* store2 = Store::make(a, {0}, 0, 1);
Block* block1 = new Block({store1});
Block* block2 = new Block({store2});
Block* enclosing = new Block({block1, block2});
Stmt* simplified = IRSimplifier::simplify(enclosing);
IS_NODE_WITH_NAME(Block, simplified, block);
ASSERT_EQ(block->nstmts(), 2);
IS_NODE_WITH_NAME(Store, block->front(), store1_);
IS_NODE_WITH_NAME(Store, block->back(), store2_);
ASSERT_EQ(store1->value(), store1_->value());
ASSERT_EQ(store2->value(), store2_->value());
}
{
// Flatten sub blocks with different depths.
// { stmt1 , { { stmt2 } } } => { stmt1, stmt2 }
Buffer a(BufHandle("A", {1}, kInt));
Store* store1 = Store::make(a, {0}, 1, 1);
Store* store2 = Store::make(a, {0}, 0, 1);
Block* block1 = new Block({store2});
Block* block2 = new Block({block1});
Block* enclosing = new Block({store1, block2});
Stmt* simplified = IRSimplifier::simplify(enclosing);
IS_NODE_WITH_NAME(Block, simplified, block);
ASSERT_EQ(block->nstmts(), 2);
IS_NODE_WITH_NAME(Store, block->front(), store1_);
IS_NODE_WITH_NAME(Store, block->back(), store2_);
ASSERT_EQ(store1->value(), store1_->value());
ASSERT_EQ(store2->value(), store2_->value());
}
{
// Flatten many layers around an empty block to an empty block.
Stmt* last = new Block({});
for (int i = 0; i < 11; ++i) {
last = new Block({last});
}
Stmt* simplified = IRSimplifier::simplify(last);
IS_NODE_WITH_NAME(Block, simplified, block);
ASSERT_EQ(block->nstmts(), 0);
}
}
void testSimplifyEliminateZeroLengthAlloc() {
KernelScope kernel_scope;
{
// Simple positive case.
VarHandle x("x", kInt);
Allocate* alloc = Allocate::make(x, kInt, {0});
Free* free_ = Free::make(x);
Block* block1 = new Block({alloc, free_});
ASSERT_EQ(block1->nstmts(), 2);
Stmt* simplified = IRSimplifier::simplify(block1);
IS_NODE_WITH_NAME(Block, simplified, block2);
ASSERT_EQ(block2->nstmts(), 0);
}
{
// Simple negative case.
VarHandle x("x", kInt);
Allocate* alloc = Allocate::make(x, kInt, {2});
Free* free_ = Free::make(x);
Block* block1 = new Block({alloc, free_});
ASSERT_EQ(block1->nstmts(), 2);
Stmt* simplified = IRSimplifier::simplify(block1);
IS_NODE_WITH_NAME(Block, simplified, block2);
ASSERT_EQ(block2->nstmts(), 2);
}
{
// Finds right Alloc/Free.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
Allocate* alloc1 = Allocate::make(x, kInt, {0});
Allocate* alloc2 = Allocate::make(y, kInt, {2});
Free* free2_ = Free::make(y);
Free* free1_ = Free::make(x);
Block* block1 = new Block({alloc1, alloc2, free2_, free1_});
ASSERT_EQ(block1->nstmts(), 4);
Stmt* simplified = IRSimplifier::simplify(block1);
IS_NODE_WITH_NAME(Block, simplified, block2);
ASSERT_EQ(block2->nstmts(), 2);
IS_NODE_WITH_NAME(Allocate, block2->stmts().front(), simplified_alloc);
IS_VAR_WITH_NAME(simplified_alloc->buffer_var(), "y");
IS_NODE_WITH_NAME(Free, block2->stmts().back(), simplified_free);
ASSERT_EQ(simplified_alloc->buffer_var(), simplified_free->buffer_var());
}
{
// Dynamic shape.
VarHandle x("x", kInt);
VarHandle y("y", kInt);
VarHandle z("z", kInt);
Allocate* alloc1 = Allocate::make(x, kInt, {0});
Allocate* alloc2 = Allocate::make(y, kInt, {z});
Free* free2_ = Free::make(y);
Free* free1_ = Free::make(x);
Block* block1 = new Block({alloc1, alloc2, free2_, free1_});
ASSERT_EQ(block1->nstmts(), 4);
Stmt* simplified = IRSimplifier::simplify(block1);
IS_NODE_WITH_NAME(Block, simplified, block2);
ASSERT_EQ(block2->nstmts(), 2);
}
}
} // namespace jit
} // namespace torch