blob: abaa35a234bd71d23213e16caf7fb3100036f390 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import numpy as np
import copy
from hypothesis import given
import hypothesis.strategies as st
from caffe2.python.model_helper import ModelHelper
from caffe2.python.models import resnet
from caffe2.python import workspace, brew
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.mkl.rewrite_graph as rewrite_graph
def deterministic_io(model):
model = copy.deepcopy(model)
for i, op in enumerate(model.InitProto().op):
op.device_option.random_seed = i + 1
model.Proto().external_output.extend(
[model.Proto().op[-1].output[0]])
return model
def simple_fc():
model = ModelHelper(name="r")
brew.fc(model, "data", "fc", 10, 10)
return model, (1, 10)
def simple_relu():
model = ModelHelper(name="r")
brew.relu(model, "data", "fc")
return model, (1, 10)
def simple_mlp():
model = ModelHelper(name="r")
brew.relu(
model,
brew.fc(
model,
brew.relu(
model,
brew.fc(
model,
"data",
"fc1",
10,
10),
"rl1"),
"fc2",
10,
10),
"rl2")
return model, (1, 10)
def simple_cnn():
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
brew.conv(
model, "data", 'conv1', 3, 16, kernel=3, stride=1
)
brew.spatial_bn(
model, 'conv1', 'conv1_spatbn', 16, epsilon=1e-3
)
brew.relu(model, 'conv1_spatbn', 'relu1')
return model, (1, 3, 32, 32)
def simple_resnet():
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
resnet.create_resnet_32x32(
model, "data", num_input_channels=1, num_groups=1, num_labels=5,
is_test=True)
return model, (1, 1, 32, 32)
def complex_resnet():
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
resnet.create_resnet50(
model, "data", num_input_channels=1, num_labels=5, is_test=True,
no_loss=True)
return model, (1, 1, 224, 224)
@unittest.skipIf(not workspace.C.has_mkldnn,
"Skipping as we do not have mkldnn.")
class MKLRewriteTest(hu.HypothesisTestCase):
@given(gen=st.sampled_from([simple_relu, simple_fc,
simple_mlp, simple_cnn]))
def test_mkl_simple_rewrite(self, gen):
cpu_model, shape = gen()
cpu_model = deterministic_io(cpu_model)
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
X = np.random.randn(*shape).astype(np.float32)
def run(model):
self.ws.run(model.InitProto())
self.ws.create_blob(model.Proto().external_input[0]).feed(X)
self.ws.run(model.Proto())
return self.ws.blobs[model.Proto().external_output[0]].fetch()
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
atol=1e-4, rtol=1e-4)
def test_mkl_resnet_rewrite(self):
cpu_model, shape = complex_resnet()
cpu_model = deterministic_io(cpu_model)
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
np.random.seed(1701)
X = np.random.randn(*shape).astype(np.float32)
def run(model):
self.ws.run(model.InitProto())
self.ws.create_blob(model.Proto().external_input[0]).feed(X)
self.ws.run(model.Proto())
return self.ws.blobs[model.Proto().external_output[0]].fetch()
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
atol=1e-4, rtol=1e-4)
if __name__ == "__main__":
import unittest
unittest.main()