blob: 916991b77801a5ff0cb399820c48f66b661bd8e9 [file] [log] [blame]
import torch
def adamax(opfunc, x, config, state=None):
""" An implementation of AdaMax http://arxiv.org/pdf/1412.6980.pdf
ARGS:
- 'opfunc' : a function that takes a single input (X), the point
of a evaluation, and returns f(X) and df/dX
- 'x' : the initial point
- 'config` : a table with configuration parameters for the optimizer
- 'config.learningRate' : learning rate
- 'config.beta1' : first moment coefficient
- 'config.beta2' : second moment coefficient
- 'config.epsilon' : for numerical stability
- 'config.weightDecay' : weight decay
- 'state' : a table describing the state of the optimizer;
after each call the state is modified.
RETURN:
- `x` : the new x vector
- `f(x)` : the value of optimized function, evaluated before the update
"""
# (0) get/update state
if config is None and state is None:
raise ValueError("adamax requires a dictionary to retain state between iterations")
state = state if state is not None else config
lr = config.get('learningRate', 0.002)
beta1 = config.get('beta1', 0.9)
beta2 = config.get('beta2', 0.999)
epsilon = config.get('epsilon', 1e-38)
wd = config.get('weightDecay', 0)
# (1) evaluate f(x) and df/dx
fx, dfdx = opfunc(x)
# (2) weight decay
if wd != 0:
dfdx.add_(wd, x)
# Initialization
if 't' not in state:
state['t'] = 0
# Exponential moving average of gradient values
state['m'] = x.new().resize_as_(dfdx).zero_()
# Exponential moving average of the infinity norm
state['u'] = x.new().resize_as_(dfdx).zero_()
# A tmp tensor to hold the input to max()
state['max'] = x.new(*((2,) + dfdx.size())).zero_()
state['t'] += 1
# Update biased first moment estimate.
state['m'].mul_(beta1).add_(1 - beta1, dfdx)
# Update the exponentially weighted infinity norm.
state['max'][0].copy_(state['u']).mul_(beta2)
state['max'][1].copy_(dfdx).abs_().add_(epsilon)
torch.max(state['max'], 0, keepdim=False, out=(state['u'], state['u'].new().long()))
biasCorrection1 = 1 - beta1 ** state['t']
stepSize = lr / biasCorrection1
# (2) update x
x.addcdiv_(-stepSize, state['m'], state['u'])
# return x*, f(x) before optimization
return x, fx