blob: 86f264bf23a3a5b6be6a4478c1e65dab5b240149 [file] [log] [blame]
def adadelta(opfunc, x, config, state=None):
"""ADADELTA implementation http://arxiv.org/abs/1212.5701
ARGUMENTS:
- `opfunc` : a function that takes a single input (X), the point of
evaluation, and returns f(X) and df/dX
- `x` : the initial point
- `config` : a table of hyper-parameters
- `config['rho']` : interpolation parameter
- `config['eps']` : for numerical stability
- `config['weightDecay']` : weight decay
- `state` : a table describing the state of the optimizer; after each
call the state is modified
- `state['paramVariance']` : vector of temporal variances of parameters
- `state['accDelta']` : vector of accummulated delta of gradients
RETURNS:
- `x` : the new x vector
- `f(x)` : the value of optimized function, evaluated before the update
"""
# (0) get/update state
if config is None and state is None:
raise ValueError("adadelta requires a dictionary to retain state between iterations")
state = state if state is not None else config
rho = config.get('rho', 0.9)
eps = config.get('eps', 1e-6)
wd = config.get('weightDecay', 0)
state['evalCounter'] = state.get('evalCounter', 0)
# (1) evaluate f(x) and df/dx
fx, dfdx = opfunc(x)
# (2) weight decay
if wd != 0:
dfdx.add_(wd, x)
# (3) parameter update
if 'paramVariance' not in state:
state['paramVariance'] = x.new().resize_as_(dfdx).zero_()
state['paramStd'] = x.new().resize_as_(dfdx).zero_()
state['delta'] = x.new().resize_as_(dfdx).zero_()
state['accDelta'] = x.new().resize_as_(dfdx).zero_()
state['paramVariance'].mul_(rho).addcmul_(1 - rho, dfdx, dfdx)
state['paramStd'].resize_as_(state['paramVariance']).copy_(state['paramVariance']).add_(eps).sqrt_()
state['delta'].resize_as_(state['paramVariance']).copy_(
state['accDelta']).add_(eps).sqrt_().div_(state['paramStd']).mul_(dfdx)
x.add_(-1, state['delta'])
state['accDelta'].mul_(rho).addcmul_(1 - rho, state['delta'], state['delta'])
# (4) update evaluation counter
state['evalCounter'] += 1
# return x*, f(x) before optimization
return x, fx