blob: d5d816312847430cb0c62049ff15b8ff2bdb353d [file] [log] [blame]
import math
import torch
from .Module import Module
from .utils import clear
class SpatialConvolution(Module):
def __init__(self, nInputPlane, nOutputPlane, kW, kH, dW=1, dH=1, padW=0, padH=None):
super(SpatialConvolution, self).__init__()
self.nInputPlane = nInputPlane
self.nOutputPlane = nOutputPlane
self.kW = kW
self.kH = kH
self.dW = dW
self.dH = dH
self.padW = padW
self.padH = padH if padH is not None else padW
self.weight = torch.Tensor(nOutputPlane, nInputPlane, kH, kW)
self.bias = torch.Tensor(nOutputPlane)
self.gradWeight = torch.Tensor(nOutputPlane, nInputPlane, kH, kW)
self.gradBias = torch.Tensor(nOutputPlane)
self.reset()
self._input = None
self._gradOutput = None
self.finput = None
self.fgradInput = None
def noBias(self):
self.bias = None
self.gradBias = None
return self
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
else:
stdv = 1. / math.sqrt(self.kW * self.kH * self.nInputPlane)
self.weight.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.uniform_(-stdv, stdv)
def _makeContiguous(self, input, gradOutput=None):
if not input.is_contiguous():
if self._input is None:
self._input = input.new()
self._input.resize_as_(input).copy_(input)
input = self._input
if gradOutput is not None:
if not gradOutput.is_contiguous():
if self._gradOutput is None:
self._gradOutput = gradOutput.new()
self._gradOutput.resize_as_(gradOutput).copy_(gradOutput)
gradOutput = self._gradOutput
return input, gradOutput
return input
def _init(self):
if self.finput is None:
self.finput = self.weight.new()
if self.fgradInput is None:
self.fgradInput = self.weight.new()
# function to re-view the weight layout in a way that would make the MM ops happy
def _viewWeight(self):
self.weight = self.weight.view(self.nOutputPlane, self.nInputPlane * self.kH * self.kW)
if self.gradWeight is not None and self.gradWeight.dim() > 0:
self.gradWeight = self.gradWeight.view(self.nOutputPlane, self.nInputPlane * self.kH * self.kW)
def _unviewWeight(self):
self.weight = self.weight.view(self.nOutputPlane, self.nInputPlane, self.kH, self.kW)
if self.gradWeight is not None and self.gradWeight.dim() > 0:
self.gradWeight = self.gradWeight.view(self.nOutputPlane, self.nInputPlane, self.kH, self.kW)
def updateOutput(self, input):
self._init()
self._viewWeight()
input = self._makeContiguous(input)
self._backend.SpatialConvolutionMM_updateOutput(
self._backend.library_state,
input,
self.output,
self.weight,
self.bias,
self.finput,
self.fgradInput,
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH
)
self._unviewWeight()
return self.output
def updateGradInput(self, input, gradOutput):
if self.gradInput is None:
return
self._init()
self._viewWeight()
input, gradOutput = self._makeContiguous(input, gradOutput)
self._backend.SpatialConvolutionMM_updateGradInput(
self._backend.library_state,
input,
gradOutput,
self.gradInput,
self.weight,
self.finput,
self.fgradInput,
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH
)
self._unviewWeight()
return self.gradInput
def accGradParameters(self, input, gradOutput, scale=1):
self._init()
input, gradOutput = self._makeContiguous(input, gradOutput)
self._viewWeight()
self._backend.SpatialConvolutionMM_accGradParameters(
self._backend.library_state,
input,
gradOutput,
self.gradWeight,
self.gradBias,
self.finput,
self.fgradInput,
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH,
scale
)
self._unviewWeight()
def type(self, type=None, tensorCache={}):
if self.finput is not None:
self.finput = torch.Tensor()
if self.fgradInput is not None:
self.fgradInput = torch.Tensor()
return super(SpatialConvolution, self).type(type, tensorCache)
def __repr__(self):
s = super(SpatialConvolution, self).__repr__()
s += '({} -> {}, {}x{}'.format(self.nInputPlane, self.nOutputPlane, self.kW, self.kH)
if self.dW != 1 or self.dH != 1 or self.padW != 0 or self.padH != 0:
s += ', {}, {}'.format(self.dW, self.dH)
if self.padW != 0 or self.padH != 0:
s += ', {}, {}'.format(self.padW, self.padH)
s += ')'
if self.bias is None:
s += ' without bias'
return s
def clearState(self):
clear(self, 'finput', 'fgradInput', '_input', '_gradOutput')
return super(SpatialConvolution, self).clearState()