| import inspect |
| from types import CodeType, FunctionType |
| from typing import Any, Dict, Optional, List, Callable, Union |
| import torch |
| |
| from .node import Argument |
| from .graph import Graph |
| from .graph_module import GraphModule |
| from .proxy import TracerBase |
| |
| HAS_VARSTUFF = inspect.CO_VARARGS | inspect.CO_VARKEYWORDS |
| |
| def _patch_function(fn: FunctionType, nargs: int) -> FunctionType: |
| co = fn.__code__ |
| co_flags = co.co_flags & ~HAS_VARSTUFF |
| co_args : tuple |
| if hasattr(co, "co_posonlyargcount"): |
| co_args = ( |
| nargs, 0, |
| 0, co.co_nlocals, co.co_stacksize, |
| co_flags, co.co_code, co.co_consts, co.co_names, |
| co.co_varnames, co.co_filename, co.co_name, |
| co.co_firstlineno, co.co_lnotab, co.co_freevars, |
| co.co_cellvars |
| ) |
| else: |
| co_args = ( |
| nargs, 0, co.co_nlocals, |
| co.co_stacksize, co_flags, co.co_code, co.co_consts, |
| co.co_names, co.co_varnames, co.co_filename, |
| co.co_name, co.co_firstlineno, co.co_lnotab, |
| co.co_freevars, co.co_cellvars) |
| new_code = CodeType(*co_args) # type: ignore |
| return FunctionType(new_code, fn.__globals__, fn.__name__, fn.__defaults__, fn.__closure__) |
| |
| # we need to insert placeholder nodes for *args and **kwargs |
| # we can't call this function normally, otherwise it would try to unpack them |
| # instead, let's make python think that args and kwargs are normal variables |
| |
| class Tracer(TracerBase): |
| """ |
| `Tracer` is the class that implements the symbolic tracing functionality |
| of `torch.fx.symbolic_trace`. A call to `symbolic_trace(m)` is equivalent |
| to `Tracer().trace(m)`. |
| |
| Tracer can be subclassed to override various behaviors of the tracing |
| process. The different behaviors that can be overridden are described |
| in the docstrings of the methods on this class. |
| """ |
| def __init__(self): |
| super().__init__() |
| |
| def create_arg(self, a: Any) -> Argument: |
| """ |
| A method to specify the behavior of tracing when preparing values to |
| be used as arguments to nodes in the `Graph`. |
| |
| By default, the behavior includes: |
| - Iterate through collection types (e.g. tuple, list, dict) and recursively |
| call `create_args` on the elements. |
| - Given a Proxy object, return a reference to the underlying IR `Node` |
| - Given a non-Proxy Tensor object, emit IR for various cases: |
| - For a Parameter, emit a `get_attr` node referring to that Parameter |
| - For a non-Parameter Tensor, store the Tensor away in a special |
| attribute referring to that attribute. |
| |
| This method can be overridden to support more types. |
| """ |
| # The base tracer is used to construct Graphs when there is no associated |
| # module hierarchy, so it can never create parameter references. |
| # The default tracer adds the ability to refer to parameters when |
| # tracing modules. |
| if isinstance(a, torch.nn.Parameter): |
| for n, p in self.root.named_parameters(): |
| if a is p: |
| return self.create_node('get_attr', n, (), {}) |
| raise NameError('parameter is not a member of this module') |
| elif isinstance(a, torch.Tensor): |
| for n, p in self.root.named_buffers(): |
| if a is p: |
| return self.create_node('get_attr', n, (), {}) |
| # Tensors do not have a reliable string repr() from which they can be |
| # constructed (and we probably don't want to rely on that, either), so |
| # for any constant Tensor values we encounter, first search for if they |
| # are an attribute of some module in the module hierarchy. If so, emit |
| # a get_attr to retrieve that tensor. Otherwise, we'll store away the |
| # tensor value into a special attribute on the Module s.t. we can |
| # retrieve it with a get_attr. |
| if isinstance(a, torch.Tensor): |
| qualname : Optional[str] = self.tensor_attrs.get(a) |
| |
| # Tensor was not found in the Module hierarchy, stow it away in a |
| # special attribute and set the qualname to refer to that |
| if not qualname: |
| i = 0 |
| while True: |
| qualname = f'_tensor_constant{i}' |
| if not hasattr(self.root, qualname): |
| break |
| i += 1 |
| setattr(self.root, qualname, a) |
| |
| return self.create_node('get_attr', qualname, (), {}) |
| return super().create_arg(a) |
| |
| def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool: |
| """ |
| A method to specify whether a given `nn.Module` is a "leaf" module. |
| |
| Leaf modules are the atomic units that appear in |
| the IR, referenced by `call_module` calls. By default, |
| Modules in the PyTorch standard library namespace (torch.nn) |
| are leaf modules. All other modules are traced through and |
| their constituent ops are recorded, unless specified otherwise |
| via this parameter. |
| |
| Args |
| m - The module itself |
| module_qualified_name - The path to root of this module. For example, |
| if you have a module hierarchy where submodule `foo` contains |
| submodule `bar`, which contains submodule `baz`, that module will |
| appear with the qualified name `foo.bar.baz` here. |
| """ |
| return m.__module__.startswith('torch.nn') and not isinstance(m, torch.nn.Sequential) |
| |
| def path_of_module(self, mod) -> str: |
| """ |
| Helper method to find the qualified name of `mod` in the Module hierarchy |
| of `root`. For example, if `root` has a submodule named `foo`, which has |
| a submodule named `bar`, passing `bar` into this function will return |
| the string "foo.bar". |
| """ |
| for n, p in self.root.named_modules(): |
| if mod is p: |
| return n |
| raise NameError('module is not installed as a submodule') |
| |
| def call_module(self, m: torch.nn.Module, forward: Callable[..., Any], args, kwargs): |
| """ |
| Method that specifies the behavior of this `Tracer` when it encounters |
| a call to an `nn.Module` instance. |
| |
| By default, the behavior is to check if the called module is a leaf module |
| via `is_leaf_module`. If it is, emit a `call_module` node referring to |
| `m` in the `Graph`. Otherwise, call the `Module` normally, tracing through |
| the operations in its `forward` function. |
| |
| This method can be overridden to--for example--create nested traced |
| GraphModules, or any other behavior you would want while tracing across |
| `Module` boundaries. |
| """ |
| module_qualified_name = self.path_of_module(m) |
| if not self.is_leaf_module(m, module_qualified_name): |
| return forward(*args, **kwargs) |
| return self.create_proxy('call_module', module_qualified_name, args, kwargs) |
| |
| def create_args_for_root(self, root_fn, is_module): |
| """ |
| Create `placeholder` nodes corresponding to the signature of the `root` |
| Module. This method introspects `root`'s signature and emits those |
| nodes accordingly, also supporting *args and **kwargs. |
| """ |
| # In some cases, a function or method has been decorated with a wrapper |
| # defined via `functools.wraps`. In this case, the outer code object |
| # will likely not contain the actual parameters we care about, so unwrap |
| # the function to get to the innermost callable. |
| fn_for_analysis = inspect.unwrap(root_fn) |
| co = fn_for_analysis.__code__ |
| total_args = co.co_argcount + co.co_kwonlyargcount |
| names_iter = iter(co.co_varnames) |
| args : List[Any] = [] |
| skip_arg_idx = 0 |
| if is_module: |
| if total_args == 0: |
| raise RuntimeError('`self` argument cannot be part of *args expansion!') |
| skip_arg_idx = 1 |
| next(names_iter) # skip self |
| args.append(self.root) |
| |
| sig = inspect.signature(fn_for_analysis) |
| |
| def proxy_placeholder(name: str): |
| if name[0] == '*': |
| default = () # type: ignore |
| else: |
| param = sig.parameters[name] |
| default = () if param.default is inspect.Parameter.empty else (param.default,) # type: ignore |
| return self.create_proxy('placeholder', name, default, {}, |
| type_expr=fn_for_analysis.__annotations__.get(name, None)) |
| |
| args.extend(proxy_placeholder(next(names_iter)) for _ in range(skip_arg_idx, total_args)) |
| |
| if co.co_kwonlyargcount > 0 or co.co_flags & HAS_VARSTUFF: |
| # TODO: type annotations for *args and **kwargs |
| if co.co_flags & inspect.CO_VARARGS: |
| args.append(proxy_placeholder('*' + next(names_iter))) |
| if co.co_flags & inspect.CO_VARKEYWORDS: |
| args.append(proxy_placeholder('**' + next(names_iter))) |
| root_fn = _patch_function(root_fn, len(args)) |
| |
| return root_fn, args |
| |
| def trace(self, root: Union[torch.nn.Module, Callable]) -> Graph: |
| """ |
| Trace `root` and return the corresponding FX `Graph` representation. `root` |
| can either be an `nn.Module` instance or a Python callable. |
| """ |
| if isinstance(root, torch.nn.Module): |
| self.root = root |
| fn = type(root).forward |
| else: |
| self.root = torch.nn.Module() |
| fn = root |
| self.graph = Graph() |
| |
| # When we encounter a Tensor value that's not a parameter, we look if it |
| # is some other attribute on the model. Construct a dict mapping Tensor |
| # values to the qualified name here for efficiency. This is used downstream |
| # in create_arg |
| self.tensor_attrs : Dict[torch.Tensor, str] = {} |
| |
| def collect_tensor_attrs(m : torch.nn.Module, prefix_atoms : List[str]): |
| for k, v in m.__dict__.items(): |
| if isinstance(v, torch.Tensor): |
| self.tensor_attrs[v] = '.'.join(prefix_atoms + [k]) |
| for k, v in m.named_children(): |
| collect_tensor_attrs(v, prefix_atoms + [k]) |
| |
| collect_tensor_attrs(self.root, []) |
| |
| assert isinstance(fn, FunctionType) |
| |
| fn, args = self.create_args_for_root(fn, isinstance(root, torch.nn.Module)) |
| |
| orig_call = torch.nn.Module.__call__ |
| orig_getattr = torch.nn.Module.__getattr__ |
| |
| parameter_proxy_cache = {} # Reduce number of get_attr calls |
| |
| # Method dispatch on parameters is not recorded unless it's directly used. |
| # Thus, we need to insert a proxy when __getattr__ requests a parameter. |
| def module_getattr_wrapper(mod, attr): |
| attr_val = orig_getattr(mod, attr) |
| if isinstance(attr_val, torch.nn.Parameter): |
| for n, p in self.root.named_parameters(): |
| if attr_val is p: |
| if n not in parameter_proxy_cache: |
| parameter_proxy_cache[n] = self.create_proxy('get_attr', n, (), {}) |
| return parameter_proxy_cache[n] |
| return attr_val |
| |
| def module_call_wrapper(mod, *args, **kwargs): |
| def forward(*args, **kwargs): |
| return orig_call(mod, *args, **kwargs) |
| |
| return self.call_module(mod, forward, args, kwargs) |
| |
| try: |
| # Seems to be a mypy limitation: https://github.com/python/mypy/issues/2427 |
| torch.nn.Module.__getattr__ = module_getattr_wrapper # type: ignore |
| torch.nn.Module.__call__ = module_call_wrapper |
| self.create_node('output', 'output', (self.create_arg(fn(*args)),), {}, |
| type_expr=fn.__annotations__.get('return', None)) |
| finally: |
| torch.nn.Module.__call__ = orig_call |
| torch.nn.Module.__getattr__ = orig_getattr # type: ignore |
| return self.graph |
| |
| |
| def symbolic_trace(root : Union[torch.nn.Module, Callable]) -> GraphModule: |
| """ |
| Symbolic tracing API |
| |
| Given an `nn.Module` or function instance `root`, this function will return a `GraphModule` |
| constructed by recording operations seen while tracing through `root`. |
| """ |
| return GraphModule(root if isinstance(root, torch.nn.Module) else torch.nn.Module(), Tracer().trace(root)) |