blob: 777e351560c6e4807fb83da425e23586eedd0756 [file] [log] [blame]
#include <gtest/gtest.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/concat_opt.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/testing/file_check.h>
namespace torch {
namespace jit {
namespace {
void checkOutputs(
const std::vector<at::Tensor>& out1,
const std::vector<at::Tensor>& out2) {
ASSERT_EQ(out1.size(), out2.size());
for (size_t i = 0; i < out1.size(); ++i) {
ASSERT_EQ(out1[i].sizes(), out2[i].sizes());
float max_diff = (out1[i] - out2[i]).abs().max().item<double>();
ASSERT_EQ(max_diff, 0);
}
}
std::vector<at::Tensor> runGraph(
std::shared_ptr<Graph> graph,
const std::vector<at::Tensor> inputs) {
std::vector<IValue> stack = fmap<IValue>(inputs);
Code code(graph, "test");
InterpreterState(code).run(stack);
TORCH_INTERNAL_ASSERT(!stack.empty());
// Graph outputs that are handled below:
// * A list of Tensors.
// * 1 Tensor.
if (stack.front().isTensorList()) {
return stack.front().toTensorVector();
}
TORCH_INTERNAL_ASSERT(stack.front().isTensor());
return {stack.front().toTensor()};
}
} // namespace
TEST(OptimizeConcatTest, ConcatWithDifferentOrderInput) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
%5 : int = prim::Constant[value=0]()
#CHECK: prim::ListConstruct(%0, %1)
%features.1 : Tensor[] = prim::ListConstruct(%0, %1)
#CHECK: aten::cat
%concat.1 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.1, %5)
#CHECK: prim::ListConstruct(%1, %0)
%features.2 : Tensor[] = prim::ListConstruct(%1, %0)
#CHECK: aten::cat
%concat.2 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.2, %5)
#CHECK: prim::ListConstruct
%res : Tensor[] = prim::ListConstruct(%concat.1, %concat.2)
return (%res)
)IR";
parseIR(input, graph.get());
std::vector<at::Tensor> inputs = {
at::rand({64, 56, 56}, at::kCPU), at::rand({32, 56, 56}, at::kCPU)};
auto orig_outputs = runGraph(graph, inputs);
EliminateConcatCommonInputs(graph);
graph->lint();
auto opt_outputs = runGraph(graph, inputs);
checkOutputs(orig_outputs, opt_outputs);
// No optimizations should have happened in this case since the inputs
// to the `cat` are in different order.
testing::FileCheck().run(input, *graph);
}
TEST(OptimizeConcatTest, ExpandConcat) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
%2 : int = prim::Constant[value=0]()
%3 : float = prim::Constant[value=0.5]()
%4 : Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%0, %3)
%5 : Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%1, %3)
%input : Tensor[] = prim::ListConstruct(%4, %5)
%concat : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%input, %2)
return (%concat)
)IR";
parseIR(input, graph.get());
std::vector<at::Tensor> inputs = {
at::rand({64, 56, 56}, at::kCPU), at::rand({32, 56, 56}, at::kCPU)};
auto orig_outputs = runGraph(graph, inputs);
ExpandConcatAndEliminateRedundancy(graph);
graph->lint();
auto opt_outputs = runGraph(graph, inputs);
checkOutputs(orig_outputs, opt_outputs);
// After full concat optimization we should have the following graph:
//
// graph(%0 : ...,
// %1 : ...):
// ...
// %4 : Tensor = aten::clamp_max(...)
// %5 : Tensor = aten::clamp_max(...)
// %13 : int[] = prim::ListConstruct(...)
// %14 : Tensor = aten::empty(%13, ...) // concat buffer
// %17 : Tensor = aten::slice(%14, ...) // slice for %4
// %18 : Tensor = aten::copy_(%17, %4)
// %20 : Tensor = aten::slice(%14, ...) // slice for %5
// %21 : Tensor = aten::copy_(%20, %5)
// return (%14)
testing::FileCheck()
.check_count("= aten::cat(", 0, /*exactly*/ true)
->check_count("= aten::clamp_max(", 2, /*exactly*/ true)
->check_count("= aten::empty(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 1, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 1, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= aten::cat(", 0, /*exactly*/ true)
->run(*graph);
}
TEST(OptimizeConcatTest, SimpleCommonInputsElimination) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
%5 : int = prim::Constant[value=0]()
%features.2 : Tensor[] = prim::ListConstruct(%0, %1)
%concat.2 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.2, %5)
%features.3 : Tensor[] = prim::ListConstruct(%0, %1, %2)
%concat.3 : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.3, %5)
%res : Tensor[] = prim::ListConstruct(%concat.2, %concat.3)
return (%res)
)IR";
parseIR(input, graph.get());
std::vector<at::Tensor> inputs = {
at::rand({64, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU)};
auto orig_outputs = runGraph(graph, inputs);
{
// Check EliminateConcatCommonInputs pass.
auto graph1 = graph->copy();
EliminateConcatCommonInputs(graph1);
graph1->lint();
auto opt_outputs = runGraph(graph1, inputs);
checkOutputs(orig_outputs, opt_outputs);
// After EliminateConcatCommonInputs, only the common elements in the list
// input of `cat` ops will be replaced with the previous `cat` results, if
// found. The number of `cat` ops and their inputs, `ListConstruct` ops,
// will remain the same as in the input.
//
// Graph after EliminateConcatCommonInputs:
// graph(%0 : ...,
// %1 : ...,
// %2 : ...):
// %3 : int = prim::Constant[value=0]()
// %4 : Tensor[] = prim::ListConstruct(%0, %1)
// %5 : Tensor = aten::cat(%4, %3)
// %9 : Tensor[] = prim::ListConstruct(%5, %2) // UPDATED
// %7 : Tensor = aten::cat(%9, %3)
// %8 : Tensor[] = prim::ListConstruct(%5, %7)
// return (%8)
testing::FileCheck()
.check_count("= prim::ListConstruct(%0, %1)", 1, /*exactly*/ true)
->check_count("= aten::cat(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(%5, %2)", 1, /*exactly*/ true)
->check_count("= aten::cat(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->check_count("= aten::cat(", 0, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 0, /*exactly*/ true)
->run(*graph1);
}
{
// Check the entire Concat opt pass.
OptimizeConcat(graph);
graph->lint();
auto opt_outputs = runGraph(graph, inputs);
checkOutputs(orig_outputs, opt_outputs);
// After full concat optimization we should have the following graph:
//
// graph(%0 : ...,
// %1 : ...,
// %2 : ...):
// ...
// %29 : int[] = prim::ListConstruct(%26, %13, %13)
// %30 : Tensor = aten::empty(%29, ...) // concat.3 buffer
// %33 : Tensor = aten::slice(%30, ...) // slice for concat.2
// %19 : Tensor = aten::slice(%33, ...) // slice for concat.2 inp %0
// %20 : Tensor = aten::copy_(%19, %0)
// %22 : Tensor = aten::slice(%33, ...) // slice for concat.2 inp %1
// %23 : Tensor = aten::copy_(%22, %1)
// %36 : Tensor = aten::slice(%30, ...) // slice for concat.3 inp %2
// %37 : Tensor = aten::copy_(%36, %2)
// %8 : Tensor[] = prim::ListConstruct(%33, %30)
// return (%8)
testing::FileCheck()
.check_count("= aten::cat(", 0, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->check_count("= aten::empty(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 2, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 1, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 1, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->run(*graph);
}
}
TEST(OptimizeConcatTest, SimpleCommonInputsElimination2) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
%5 : int = prim::Constant[value=0]()
%features.2 : Tensor[] = prim::ListConstruct(%1, %2)
%concat.2 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.2, %5)
%features.3 : Tensor[] = prim::ListConstruct(%0, %1, %2)
%concat.3 : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.3, %5)
%res : Tensor[] = prim::ListConstruct(%concat.2, %concat.3)
return (%res)
)IR";
parseIR(input, graph.get());
std::vector<at::Tensor> inputs = {
at::rand({64, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU)};
auto orig_outputs = runGraph(graph, inputs);
{
// Check EliminateConcatCommonInputs pass.
auto graph1 = graph->copy();
EliminateConcatCommonInputs(graph1);
graph1->lint();
auto opt_outputs = runGraph(graph1, inputs);
checkOutputs(orig_outputs, opt_outputs);
// After EliminateConcatCommonInputs, only the common elements in the list
// input of `cat` ops will be replaced with the previous `cat` results, if
// found. The number of `cat` ops and their inputs, `ListConstruct` ops,
// will remain the same as in the input.
//
// Graph after EliminateConcatCommonInputs:
// graph(%0 : ...,
// %1 : ...,
// %2 : ...):
// %3 : int = prim::Constant[value=0]()
// %4 : Tensor[] = prim::ListConstruct(%1, %2)
// %5 : Tensor = aten::cat(%4, %3)
// %9 : Tensor[] = prim::ListConstruct(%0, %5) // UPDATED
// %7 : Tensor = aten::cat(%9, %3)
// %8 : Tensor[] = prim::ListConstruct(%5, %7)
// return (%8)
testing::FileCheck()
.check_count("= prim::ListConstruct(%1, %2)", 1, /*exactly*/ true)
->check_count("= aten::cat(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(%0, %5)", 1, /*exactly*/ true)
->check_count("= aten::cat(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->check_count("= aten::cat(", 0, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 0, /*exactly*/ true)
->run(*graph1);
}
{
// Check the entire Concat opt pass.
OptimizeConcat(graph);
graph->lint();
auto opt_outputs = runGraph(graph, inputs);
checkOutputs(orig_outputs, opt_outputs);
// After full concat optimization we should have the following graph:
//
// graph(%0 : ...,
// %1 : ...,
// %2 : ...):
// ...
// %29 : int[] = prim::ListConstruct(%26, %13, %13)
// %30 : Tensor = aten::empty(%29, ...) // concat.3 buffer
// %33 : Tensor = aten::slice(%30, ...) // slice for concat.2
// %19 : Tensor = aten::slice(%33, ...) // slice for concat.2 inp %0
// %20 : Tensor = aten::copy_(%19, %0)
// %22 : Tensor = aten::slice(%33, ...) // slice for concat.2 inp %1
// %23 : Tensor = aten::copy_(%22, %1)
// %36 : Tensor = aten::slice(%30, ...) // slice for concat.3 inp %2
// %37 : Tensor = aten::copy_(%36, %2)
// %8 : Tensor[] = prim::ListConstruct(%33, %30)
// return (%8)
testing::FileCheck()
.check_count("= aten::cat(", 0, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->check_count("= aten::empty(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 2, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 1, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 1, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->run(*graph);
}
}
TEST(OptimizeConcatTest, MoreCommonInputsElimination) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
%5 : int = prim::Constant[value=0]()
%features.1 : Tensor[] = prim::ListConstruct(%0)
%concat.1 : Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.1, %5)
%features.2 : Tensor[] = prim::ListConstruct(%0, %1)
%concat.2 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.2, %5)
%features.3 : Tensor[] = prim::ListConstruct(%0, %1, %2)
%concat.3 : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.3, %5)
%res : Tensor[] = prim::ListConstruct(%concat.1, %concat.2, %concat.3)
return (%res)
)IR";
parseIR(input, graph.get());
std::vector<at::Tensor> inputs = {
at::rand({64, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU)};
auto orig_outputs = runGraph(graph, inputs);
{
// Check EliminateConcatCommonInputs pass.
auto graph1 = graph->copy();
EliminateConcatCommonInputs(graph1);
graph1->lint();
auto opt_outputs = runGraph(graph1, inputs);
checkOutputs(orig_outputs, opt_outputs);
// After EliminateConcatCommonInputs, only the common elements in the list
// input of `cat` ops will be replaced with the previous `cat` results, if
// found. The number of `cat` ops and their inputs, `ListConstruct` ops,
// will remain the same as in the input.
testing::FileCheck()
.check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->check_count("= aten::cat(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->check_count("= aten::cat(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->check_count("= aten::cat(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->run(*graph1);
}
{
// Check the entire Concat opt pass.
OptimizeConcat(graph);
graph->lint();
auto opt_outputs = runGraph(graph, inputs);
checkOutputs(orig_outputs, opt_outputs);
// After full concat optimization we should have the following:
// prim::ListConstruct - to construct the input sizes for empty
// aten::empty - for the final `aten::cat` buffer.
// aten::slice - slice for concat.2
// aten::slice - slice for concat.1
// aten::copy_ - copy %0
// aten::slice - slice for concat.2 input 1
// aten::copy_ - copy %1
// aten::slice - slice for concat.3 input 2
// aten::copy_ - copy %2
// prim::ListConstruct - for the result
testing::FileCheck()
.check_count("= aten::cat(", 0, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->check_count("= aten::empty(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 3, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 1, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= aten::slice(", 1, /*exactly*/ true)
->check_count("= aten::copy_(", 1, /*exactly*/ true)
->check_count("= prim::ListConstruct(", 1, /*exactly*/ true)
->run(*graph);
}
}
TEST(OptimizeConcatTest, MoreCommonInputsElimination2) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%3: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%4: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
%5 : int = prim::Constant[value=0]()
%features.1 : Tensor[] = prim::ListConstruct(%0)
%concat.1 : Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.1, %5)
%features.2 : Tensor[] = prim::ListConstruct(%0, %1)
%concat.2 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.2, %5)
%features.3 : Tensor[] = prim::ListConstruct(%0, %1, %2)
%concat.3 : Float(128, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.3, %5)
%features.4 : Tensor[] = prim::ListConstruct(%0, %1, %2, %3)
%concat.4 : Float(160, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.4, %5)
%features.5 : Tensor[] = prim::ListConstruct(%0, %1, %2, %3, %4)
%concat.5 : Float(192, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.5, %5)
%res : Tensor[] = prim::ListConstruct(%concat.1, %concat.2, %concat.3, %concat.4, %concat.5)
return (%res)
)IR";
parseIR(input, graph.get());
std::vector<at::Tensor> inputs = {
at::rand({64, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU)};
auto orig_outputs = runGraph(graph, inputs);
OptimizeConcat(graph);
graph->lint();
auto opt_outputs = runGraph(graph, inputs);
checkOutputs(orig_outputs, opt_outputs);
testing::FileCheck()
.check_count("= aten::cat(", 0, /*exactly*/ true)
->check_count("= aten::empty(", 1, /*exactly*/ true)
->check_count("= aten::copy_(", 5, /*exactly*/ true)
->check_count("= aten::cat(", 0, /*exactly*/ true)
->check_count("= aten::empty(", 0, /*exactly*/ true)
->run(*graph);
}
TEST(OptimizeConcatTest, ConcatWithoutResultShape) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
%2 : int = prim::Constant[value=0]()
%3 : float = prim::Constant[value=0.5]()
# CHECK: clamp_max
%4 : Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%0, %3)
# CHECK: clamp_max
%5 : Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%1, %3)
# CHECK: prim::ListConstruct
%6 : Tensor[] = prim::ListConstruct(%4, %5)
# CHECK: aten::cat
%7 : Tensor = aten::cat(%6, %2)
return (%7)
)IR";
parseIR(input, graph.get());
std::vector<at::Tensor> inputs = {
at::rand({64, 56, 56}, at::kCPU), at::rand({32, 56, 56}, at::kCPU)};
auto orig_outputs = runGraph(graph, inputs);
ExpandConcatAndEliminateRedundancy(graph);
graph->lint();
auto opt_outputs = runGraph(graph, inputs);
checkOutputs(orig_outputs, opt_outputs);
// No optimizations should have happened in this case since the output
// shape of `aten::cat` is not known.
testing::FileCheck().run(input, *graph);
}
TEST(OptimizeConcatTest, ConcatWithoutInputShape) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
%2 : int = prim::Constant[value=0]()
%3 : float = prim::Constant[value=0.5]()
# CHECK: clamp_max
%4 : Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::clamp_max(%0, %3)
# CHECK: clamp_max
%5 : Tensor = aten::clamp_max(%1, %3)
# CHECK: prim::ListConstruct
%6 : Tensor[] = prim::ListConstruct(%4, %5)
# CHECK: aten::cat
%7 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%6, %2)
return (%7)
)IR";
parseIR(input, graph.get());
std::vector<at::Tensor> inputs = {
at::rand({64, 56, 56}, at::kCPU), at::rand({32, 56, 56}, at::kCPU)};
auto orig_outputs = runGraph(graph, inputs);
ExpandConcatAndEliminateRedundancy(graph);
graph->lint();
auto opt_outputs = runGraph(graph, inputs);
checkOutputs(orig_outputs, opt_outputs);
// No optimizations should have happened in this case since the shape of %5,
// which is an input to `aten::cat`, is not known.
testing::FileCheck().run(input, *graph);
}
TEST(OptimizeConcatTest, NoOptimizationWhenInputListIsMutated) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%0: Float(64, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%1: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu),
%2: Float(32, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu)):
%5 : int = prim::Constant[value=0]()
# CHECK: ListConstruct
%features.2 : Tensor[] = prim::ListConstruct(%0, %1)
# CHECK: aten::append
%6 : Tensor [] = aten::append(%features.2, %2)
# CHECK: aten::cat
%concat.2 : Float(96, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.2, %5)
# CHECK: ListConstruct
%features.3 : Tensor[] = prim::ListConstruct(%0, %1, %2)
# CHECK: aten::append
%7 : Tensor [] = aten::append(%features.3, %0)
# CHECK: aten::cat
%concat.3 : Float(160, 56, 56, strides=[3136, 56, 1], requires_grad=0, device=cpu) = aten::cat(%features.3, %5)
%res : Tensor[] = prim::ListConstruct(%concat.2, %concat.3)
return (%res)
)IR";
parseIR(input, graph.get());
std::vector<at::Tensor> inputs = {
at::rand({64, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU),
at::rand({32, 56, 56}, at::kCPU)};
auto orig_outputs = runGraph(graph, inputs);
{
// Check EliminateConcatCommonInputs pass.
auto graph1 = graph->copy();
EliminateConcatCommonInputs(graph1);
graph1->lint();
auto opt_outputs = runGraph(graph1, inputs);
checkOutputs(orig_outputs, opt_outputs);
// No optimizations should have happened since the input lists to cat
// are being mutated in the graph.
testing::FileCheck().run(input, *graph);
}
{
// Check the entire Concat opt pass.
OptimizeConcat(graph);
graph->lint();
auto opt_outputs = runGraph(graph, inputs);
checkOutputs(orig_outputs, opt_outputs);
// No optimizations should have happened since the input lists to cat
// are being mutated in the graph.
testing::FileCheck().run(input, *graph);
}
}
} // namespace jit
} // namespace torch