| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from caffe2.python import core |
| |
| import numpy as np |
| |
| |
| class ParameterTags(object): |
| BIAS = 'BIAS' |
| WEIGHT = 'WEIGHT' |
| COMPUTED_PARAM = 'COMPUTED_PARAM' |
| |
| |
| class ParameterType(object): |
| DENSE = 'dense' |
| SPARSE = 'sparse' |
| |
| |
| class ParameterInfo(object): |
| |
| def __init__( |
| self, param_id, param, key=None, shape=None, length=None, |
| grad=None, blob_copy=None): |
| assert isinstance(param, core.BlobReference) |
| self.param_id = param_id |
| self.name = str(param) |
| self.blob = param |
| self.key = key |
| self.shape = shape |
| self.size = None if shape is None else np.prod(shape) |
| self.length = max(1, length if length is not None else 1) |
| self.grad = grad |
| self._cloned_init_net = None |
| # Optionally store equivalent copies of the blob |
| # in different precisions (i.e. half and float copies) |
| # stored as a dict of TensorProto.DataType -> BlobReference |
| self.blob_copy = blob_copy |
| |
| def grad_type(self): |
| # self.grad could be None for model parallelism with parameter server |
| if self.grad is None: |
| return |
| return ( |
| ParameterType.SPARSE if isinstance(self.grad, core.GradientSlice) |
| else ParameterType.DENSE) |
| |
| def cloned_init_net(self): |
| if not self._cloned_init_net: |
| init_net, outputs = self.blob.Net().ClonePartial( |
| 'param_%d_%s_init' % (self.param_id, self.name), |
| inputs=[], |
| outputs=[self.blob]) |
| self._cloned_init_net = (init_net, outputs[0]) |
| return self._cloned_init_net |
| |
| def __str__(self): |
| return self.name |